Digitalisation On Automotive Supply Chain for Climate Competitiveness: A Systematic Bibliometric Analysis DOI Creative Commons

Velagapudi Manikrishna,

Velaga Sri Sai,

Tripuraneni Jaggaiah

и другие.

International Journal of Religion, Год журнала: 2024, Номер 5(6), С. 1083 - 1096

Опубликована: Май 4, 2024

The automotive industry, a cornerstone of global manufacturing, is undergoing profound transformation driven by digitalization. This research paper explores the impact digitalization on supply chain and its role in enhancing climate competitiveness. As industry strives to meet stringent environmental standards consumer demands for sustainability, leveraging digital technologies becomes imperative. We use R Studio software perform bibliometric analysis this study. Our initial repository data came from Scopus database. Following keyword search before applying limited criteria, we were able find 3202 papers. then started integrating which included following: stream: Business Management & Accounting, source type: Journal, no author, duplicate titles, language: English. After these 935 selected citations, bibliographical data, abstracts keywords, funding information, other exporting our database Scopus.

Язык: Английский

AI-driven Digital Circular Economy with Material and Energy Sustainability for Industry 4.0 DOI Creative Commons
Yuekuan Zhou

Energy and AI, Год журнала: 2025, Номер unknown, С. 100508 - 100508

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

0

Construction of a new robust dual-channel supply chain network with forward logistics and reverse logistics DOI Creative Commons

Q. Zhang,

Hongliang Li, Huili Pei

и другие.

Computers & Industrial Engineering, Год журнала: 2025, Номер unknown, С. 111075 - 111075

Опубликована: Апрель 1, 2025

Язык: Английский

Процитировано

0

Designing Predictive Analytics Frameworks for Supply Chain Quality Management: A Machine Learning Approach to Defect Rate Optimization DOI Creative Commons

Zainab Nadhim Jawad,

Balázs Villányi

Platforms, Год журнала: 2025, Номер 3(2), С. 6 - 6

Опубликована: Апрель 9, 2025

Efficient supply chain management (SCM) is essential for enterprises seeking to enhance operational efficiency, reduce costs, and mitigate risks while ensuring product quality customer satisfaction. Addressing concerns within the proactively helps minimize rework, recalls, returns, leading significant cost savings improved profitability. This study presents a machine learning (ML)-driven predictive analytics framework designed forecast defect rates optimize control processes. The research leverages dataset sourced from real-world fashion beauty startup, hosted in public repository. employs advanced ML algorithms, including extreme gradient boosting (XGBoost), support vector machines (SVMs), random forests (RFs), accurately predict derive actionable insights optimization. Results demonstrate effectiveness of improving management, enabling rates, return on investment (ROI). proposed be scalable transferable, adaptability across various industries, fashion, e-commerce, manufacturing. These findings underscore economic benefits integrating into control, offering data-driven, proactive approach achieving high-efficiency, high-quality operations.

Язык: Английский

Процитировано

0

The Transformative Role of ML Algorithms in Supply Chain Management: A Systematic Literature Review DOI

Khaoula Elkabtane,

Touria Benazzouz,

Samya Dahbi

и другие.

Lecture notes in networks and systems, Год журнала: 2025, Номер unknown, С. 211 - 220

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

0

Uncovering the optimal corporate social responsibility bearer in express packaging waste management system considering consumer surplus and echelon utilization DOI
Jiahui Yang,

Trinh Cao,

Xiaona Li

и другие.

Waste Management, Год журнала: 2025, Номер 202, С. 114835 - 114835

Опубликована: Май 1, 2025

Язык: Английский

Процитировано

0

Evaluation of sustainable manufacturing performance – A case illustration with multistakeholder perspective DOI
Song Xu,

Thulasi Mani Murugesan,

Abdullah A. Elfar

и другие.

Journal of Cleaner Production, Год журнала: 2024, Номер 458, С. 142368 - 142368

Опубликована: Апрель 27, 2024

Язык: Английский

Процитировано

3

An analysis on the role of artificial intelligence in green supply chains DOI
Yimin Yang, Chaoqun Yi, Hailing Li

и другие.

Technological Forecasting and Social Change, Год журнала: 2025, Номер 217, С. 124169 - 124169

Опубликована: Май 6, 2025

Язык: Английский

Процитировано

0

Joint optimization of product service system configuration and delivery with learning-based valid cut selection and a tailored heuristic DOI
Yilun Zhang, Sicheng Liu, Zhibin Jiang

и другие.

Transportation Research Part E Logistics and Transportation Review, Год журнала: 2024, Номер 187, С. 103578 - 103578

Опубликована: Июнь 1, 2024

Язык: Английский

Процитировано

2

A Bi-objective location-routing model for the healthcare waste management in the era of logistics 4.0 under uncertainty DOI
Kannan Govindan,

Fereshteh Sadeghi Naieni Fard,

Fahimeh Asgari

и другие.

International Journal of Production Economics, Год журнала: 2024, Номер 276, С. 109342 - 109342

Опубликована: Июль 25, 2024

Язык: Английский

Процитировано

2

Remanufacturing in global supply chains: Self-operating or licensing? DOI
Hongfu Huang, Fei Xu, Min Wang

и другие.

Transportation Research Part E Logistics and Transportation Review, Год журнала: 2024, Номер 190, С. 103708 - 103708

Опубликована: Авг. 15, 2024

Язык: Английский

Процитировано

2