A quantitative study on anchoring speed for Maritime Autonomous Surface Ships DOI
Weibing Wu,

Xiaolong He,

Shicai Chen

и другие.

Journal of Marine Engineering & Technology, Год журнала: 2024, Номер unknown, С. 1 - 11

Опубликована: Дек. 2, 2024

The autonomous decision regarding anchoring speed is one of the key technologies in design and implementation an intelligent system. at which a vessel drops its anchor termed speed. In order to find suitable for anchoring, mathematical model linking chain tension established on basis ship kinetic energy model. After fully considering consumed during transition from touching seabed retrieval, strength requirements equipment, four different sizes real ships are selected calculate limit value when does not exceed brake force windlass holding power respectively. By comparing calculated with empirical value, reliability verified. Furthermore, limitations analyzed suggestions put forward. research results demonstrate that effectively predicts optimal speeds, bridging gap left by traditional experience-based methods. Moreover, only supports development systems but also allows customisation based specific characteristics types.

Язык: Английский

Coupling and causation analysis of risk influencing factors for navigational accidents in ice-covered waters DOI
Shanshan Fu, Mingyan Wu, Yue Zhang

и другие.

Ocean Engineering, Год журнала: 2025, Номер 320, С. 120280 - 120280

Опубликована: Янв. 8, 2025

Язык: Английский

Процитировано

3

Risk influencing factors on the consequence of waterborne transportation accidents in China (2013-2023) based on data-driven machine learning DOI
Weiliang Qiao,

Enze Huang,

Meng Zhang

и другие.

Reliability Engineering & System Safety, Год журнала: 2025, Номер unknown, С. 110829 - 110829

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

2

An integrated multidimensional model for heterogeneity analysis of maritime accidents during different watchkeeping periods DOI Creative Commons
Xinjian Wang,

Wenjie Cao,

Tianyi Li

и другие.

Ocean & Coastal Management, Год журнала: 2025, Номер 264, С. 107625 - 107625

Опубликована: Март 17, 2025

Язык: Английский

Процитировано

2

A novel method for ship carbon emissions prediction under the influence of emergency events DOI Creative Commons
Yinwei Feng, Xinjian Wang,

Jianlin Luan

и другие.

Transportation Research Part C Emerging Technologies, Год журнала: 2024, Номер 165, С. 104749 - 104749

Опубликована: Июль 13, 2024

Accurate prediction of ship emissions aids to ensure maritime sustainability but encounters challenges, such as the absence high-precision and high-resolution databases, complex nonlinear relationships, vulnerability emergency events. This study addresses these issues by developing novel solutions: a Spatiotemporal Trajectory Search Algorithm (STSA) based on Automatic Identification System (AIS) data; rolling structure-based Seasonal-Trend decomposition Loess technique (STL); modular deep learning model Structured Components, stacked-Long short-term memory, Convolutional neural networks Comprehensive forecasting module (SCLCC). Based solutions, case using pre post-COVID-19 AIS data demonstrates reliability pandemic's impact emissions. Numerical experiments reveal that STSA algorithm significantly outperforms conventional identification standard in terms accuracy navigation state identification; SCLCC exhibits greater resistance against events excels comprehensively capturing global information, thus yielding higher accurate results. sheds light changing dynamics transport its impacts carbon

Язык: Английский

Процитировано

13

Investigation of the risk influential factors of maritime accidents: A novel topology and robustness analytical framework DOI Creative Commons
Yuhao Cao, Iulia Manole, Arnab Majumdar

и другие.

Reliability Engineering & System Safety, Год журнала: 2024, Номер 254, С. 110636 - 110636

Опубликована: Ноя. 6, 2024

Язык: Английский

Процитировано

9

A novel feature engineering method for severity prediction of marine accidents DOI
Tianyi Li, Xinjian Wang, Zhiwei Zhang

и другие.

Journal of Marine Engineering & Technology, Год журнала: 2025, Номер unknown, С. 1 - 16

Опубликована: Фев. 27, 2025

Язык: Английский

Процитировано

1

Data-driven resilience analysis of the global container shipping network against two cascading failures DOI Creative Commons
Yuhao Cao, Xuri Xin, Pisit Jarumaneeroj

и другие.

Transportation Research Part E Logistics and Transportation Review, Год журнала: 2024, Номер 193, С. 103857 - 103857

Опубликована: Ноя. 19, 2024

Язык: Английский

Процитировано

7

A novel integrated method for heterogeneity analysis of marine accidents involving different ship types DOI Creative Commons

Wenjie Cao,

Xinjian Wang, Jian Li

и другие.

Ocean Engineering, Год журнала: 2024, Номер 312, С. 119295 - 119295

Опубликована: Сен. 24, 2024

Язык: Английский

Процитировано

6

Framework for detecting abnormal behaviors of passenger ships: A case study from the Yangtze River Estuary DOI
Zhou Yong, Xinyu Shen, Shanshan Fu

и другие.

Ocean Engineering, Год журнала: 2025, Номер 325, С. 120796 - 120796

Опубликована: Март 3, 2025

Язык: Английский

Процитировано

0

Embracing imperfect data: A novel data-driven Bayesian network framework for maritime accidents severity risk assessment DOI
Hanwen Fan, Jiaxin Wang,

Zheng Chang

и другие.

Ocean Engineering, Год журнала: 2025, Номер 329, С. 121212 - 121212

Опубликована: Апрель 12, 2025

Язык: Английский

Процитировано

0