Digital Twin for a Smart Metro Service Platform: Long-Term Performance of a Tunnel Structure in Wuhan DOI
Cheng Zhou,

Wenbo Qin,

Hanbin Luo

и другие.

Опубликована: Янв. 1, 2024

Download This Paper Open PDF in Browser Add to My Library Share: Permalink Using these links will ensure access this page indefinitely Copy URL DOI

Язык: Английский

Digital twin for intelligent tunnel construction DOI
Tao Li, Xiaojun Li,

Yi Rui

и другие.

Automation in Construction, Год журнала: 2023, Номер 158, С. 105210 - 105210

Опубликована: Ноя. 30, 2023

Язык: Английский

Процитировано

46

Digital Twin Technology in Transportation Infrastructure: A Comprehensive Survey of Current Applications, Challenges, and Future Directions DOI Creative Commons
Di Wu,

Ao Zheng,

Wenshuai Yu

и другие.

Applied Sciences, Год журнала: 2025, Номер 15(4), С. 1911 - 1911

Опубликована: Фев. 12, 2025

Transportation infrastructure is central to economic development and the daily lives of citizens. However, rapid urbanization, increasing vehicle ownership, growing concerns about sustainable have significantly heightened complexity managing these systems. Although digital twin (DT) technology holds great promise, most current research focuses on specific areas, lacking a comprehensive framework that spans entire lifecycle transportation infrastructure, from planning construction operation maintenance. The technical challenges integrating different DT systems remain unclear, which some extent limits potential in management infrastructure. To address this gap, review first summarizes fundamental concepts architectures involved for such as roads, bridges, tunnels, hubs. From perspective, are categorized based functional scope, data integration methods, application stages, their key technologies basic frameworks outlined. Subsequently, applications various stages infrastructure—planning construction, maintenance, decommissioning renewal—are analyzed, progress reviewed discussed. Finally, future directions achieving full system encompassing technical, operational, ethical aspects, discussed summarized. insights gained herein will be valuable researchers, urban planners, engineers, policymakers.

Язык: Английский

Процитировано

5

Transforming the maintenance of underground infrastructure through Digital Twins: State of the art and outlook DOI Creative Commons
Huamei Zhu, Mengqi Huang, Pei-Qi Ji

и другие.

Tunnelling and Underground Space Technology, Год журнала: 2025, Номер 161, С. 106508 - 106508

Опубликована: Март 6, 2025

Язык: Английский

Процитировано

1

Shifting research from defect detection to defect modeling in computer vision-based structural health monitoring DOI
Junjie Chen,

I Lei Chan,

Ioannis Brilakis

и другие.

Automation in Construction, Год журнала: 2024, Номер 164, С. 105481 - 105481

Опубликована: Май 21, 2024

Язык: Английский

Процитировано

9

Comprehensive digital twin for infrastructure: A novel ontology and graph-based modelling paradigm DOI
Tao Li,

Yi Rui,

Hehua Zhu

и другие.

Advanced Engineering Informatics, Год журнала: 2024, Номер 62, С. 102747 - 102747

Опубликована: Июль 30, 2024

Язык: Английский

Процитировано

9

Urban digital twin-based solution using geospatial information for solid waste management DOI Creative Commons
Iván Urango Cardenas, Mila Koeva, Pirouz Nourian

и другие.

Sustainable Cities and Society, Год журнала: 2024, Номер unknown, С. 105798 - 105798

Опубликована: Сен. 1, 2024

Язык: Английский

Процитировано

7

Integrated natural language processing method for text mining and visualization of underground engineering text reports DOI
Ruiqi Shao, Peng Lin, Zhenhao Xu

и другие.

Automation in Construction, Год журнала: 2024, Номер 166, С. 105636 - 105636

Опубликована: Июль 24, 2024

Язык: Английский

Процитировано

6

Digital twin for smart metro service platform: Evaluating long-term tunnel structural performance DOI
Cheng Zhou,

Wenbo Qin,

Hanbin Luo

и другие.

Automation in Construction, Год журнала: 2024, Номер 167, С. 105713 - 105713

Опубликована: Авг. 26, 2024

Язык: Английский

Процитировано

5

Dynamic risk early warning system for tunnel construction based on two-dimensional cloud model DOI

Huaiyuan Sun,

Mengqi Zhu,

Yiming Dai

и другие.

Expert Systems with Applications, Год журнала: 2024, Номер 255, С. 124799 - 124799

Опубликована: Июль 14, 2024

Язык: Английский

Процитировано

4

IoT-Enabled Predictive Maintenance for Sustainable Transportation Fleets DOI Creative Commons
Vaibhav Mittal, P. Srividya Devi,

Alok Kumar Pandey

и другие.

E3S Web of Conferences, Год журнала: 2024, Номер 511, С. 01012 - 01012

Опубликована: Янв. 1, 2024

This research examines the profound effects of integrating IoT-enabled predictive maintenance in sustainable transportation fleets. By using real-time sensor data, this implementation aims to enhance fleet dependability and operational efficiency. The fleet, including a variety vehicles such as electric buses, hybrid cars, trucks, CNG-powered vans, is constantly monitored IoT sensors that capture important characteristics like engine temperature, battery voltage, brake wear percentages. algorithms adapt schedules response live enabling proactive strategy tackles prospective problems before they result major failures. examination records reveals prompt actions, showcasing system’s efficacy reducing interruptions improving overall fleet. Moreover, percentage change confirms flexibility, demonstrating its capacity anticipate fluctuations wear. findings highlight ability various operating situations contribution lowering expenses while enhancing effectiveness. established approach incorporates ethical issues, data security privacy, ensure responsible adoption technology. study has broader ramifications beyond particular dataset, providing detailed plan for incorporating IoTenabled into contemporary infrastructures. study’s offer valuable insights potential strategies transform industry towards sustainability. contributes future where fleets operate with increased efficiency, reduced environmental impact, improved reliability.

Язык: Английский

Процитировано

3