
Fuel, Год журнала: 2024, Номер 384, С. 133953 - 133953
Опубликована: Дек. 6, 2024
Язык: Английский
Fuel, Год журнала: 2024, Номер 384, С. 133953 - 133953
Опубликована: Дек. 6, 2024
Язык: Английский
Rock Mechanics and Rock Engineering, Год журнала: 2025, Номер unknown
Опубликована: Фев. 5, 2025
Язык: Английский
Процитировано
2Applied Sciences, Год журнала: 2024, Номер 14(14), С. 6164 - 6164
Опубликована: Июль 15, 2024
Borehole breakouts significantly influence drilling operations’ efficiency and economics. Accurate evaluation of breakout size (angle depth) can enhance strategies hold potential for in situ stress magnitude inversion. In this study, borehole is approached as a complex nonlinear problem with multiple inputs outputs. Three hybrid multi-output models, integrating commonly used machine learning algorithms (artificial neural networks ANN, random forests RF, Boost) the Walrus optimization algorithm (WAOA) techniques, are developed. Input features determined through literature research (friction angle, cohesion, rock modulus, Poisson’s ratio, mud pressure, radius, stress), 501 related datasets collected to construct dataset. Model performance assessed using Pearson Correlation Coefficient (R2), Mean Absolute Error (MAE), Variance Accounted For (VAF), Root Squared (RMSE). Results indicate that WAOA-ANN exhibits excellent stable prediction performance, particularly on test set, outperforming single-output ANN model. Additionally, SHAP sensitivity analysis conducted model reveals maximum horizontal principal (σH) most influential parameter predicting both angle depth breakout. Combining results studies analyses conducted, considered be an effective size.
Язык: Английский
Процитировано
4Mining Metallurgy & Exploration, Год журнала: 2024, Номер 41(5), С. 2325 - 2340
Опубликована: Авг. 8, 2024
Язык: Английский
Процитировано
4Tunnelling and Underground Space Technology, Год журнала: 2024, Номер 154, С. 106081 - 106081
Опубликована: Сен. 19, 2024
Язык: Английский
Процитировано
4Frontiers in Earth Science, Год журнала: 2024, Номер 12
Опубликована: Дек. 16, 2024
The accurate rockburst prediction is crucial for ensuring the safety of underground engineering construction. Among various methods, machine learning-based can better solve nonlinear relationship between rockbursts and influencing factors thus has great potential applications. However, current research often faces certain challenges related to feature selection indices poor model optimization performance. This study compiled 342 cases from domestic international sources construct an initial database. In order determine relevant indicators, a method based on ReliefF-Kendall was proposed. database equalized visualized using Adasyn t-SNE algorithms. Five models [support vector (SVM), least-squares support (LSSVM), kernel extreme learning (KELM), Random Forest (RF), XGBoost] were established by employing Secretary Bird Optimization (SBO) algorithm 5-fold cross-validation optimize optimal selected comprehensive assessment generalization ability (accuracy, kappa, precision, recall, F1-score) stability (average accuracy). reliability proposed selection, optimization, data balancing methods verified comparing with other methods. results indicate that PSO-SVM demonstrated superior accuracy performance; reach 81.4% (optimal) 80.1% (average). main affecting occurrence are W et , maximum tangential stress ( MTS ), D uniaxial compressive strength UCS ). Finally, applied cases, achieving 90% verifying its applicability.
Язык: Английский
Процитировано
3Arabian Journal for Science and Engineering, Год журнала: 2025, Номер unknown
Опубликована: Март 5, 2025
Abstract With the continuous acceleration of urbanization, problem ground settlement induced by underground tunnel construction has received more and widespread attention. This study addresses challenge predicting surface subsidence in urban construction, a critical concern geotechnical engineering. Random forest (RF) models were optimized using three distinct metaheuristic algorithms: ant lion optimizer (ALO), multiverse (MVO), grasshopper optimization algorithm (GOA). The enhancements significantly improved model accuracy, as demonstrated detailed performance metrics GOA-optimized RF (GOA-RF Pop = 20) on Changsha Metro Line 3 dataset, which included 294 instances 12 feature parameters. achieved an MAE 1.3820, MAPE 181.2249, correlation coefficient 0.9273, RMSE 2.5209 training set; 2.4695, 275.2054, R value 0.8877, 4.2540 testing set. A sensitivity analysis within random framework revealed that torque (To) condition (Gc) had most significant impact subsidence, whereas influence modified dynamic penetration test (MDPT) was least pronounced. Additionally, MATLAB-based application developed App Designer module, integrating these into user-friendly GUI facilitates prediction management risks, thereby enhancing practical effectiveness engineering risk mitigation strategies.
Язык: Английский
Процитировано
0Geomechanics and Geophysics for Geo-Energy and Geo-Resources, Год журнала: 2025, Номер 11(1)
Опубликована: Май 22, 2025
Язык: Английский
Процитировано
0Tunnelling and Underground Space Technology, Год журнала: 2025, Номер 163, С. 106646 - 106646
Опубликована: Июнь 3, 2025
Язык: Английский
Процитировано
0Geohazard Mechanics, Год журнала: 2024, Номер unknown
Опубликована: Ноя. 1, 2024
Язык: Английский
Процитировано
1Fuel, Год журнала: 2024, Номер 384, С. 133953 - 133953
Опубликована: Дек. 6, 2024
Язык: Английский
Процитировано
0