A New 4-D Highly Chaotic Two-Scroll System with a Hyperbola of Equilibrium Points and Its Circuit Simulation DOI
Sundarapandian Vaıdyanathan, Fareh Hannachi, Aceng Sambas

и другие.

Опубликована: Дек. 1, 2023

In this work, we present a new 4-D highly chaotic two-scroll system with hyperbola of equilibrium points. The mathematical model the is obtained by modifying dynamics Sprott-C (1994). First, study dynamic properties such as phase portraits, Lyapunov exponents, Kaplan-Yorke dimension, and Since has infinitely many number points, it hidden attractors. Next, carry out bifurcation analysis using diagrams exponents. We also investigate offset-boosting control system. Furthermore, demonstrate presence multistability coexisting attractors in newly introduced Finally, design an electronic circuit for MultiSim 14.2, which useful practical applications proposed

Язык: Английский

Energy and self-adaption in a memristive map neuron DOI
Junen Jia, Chunni Wang,

Xiaofeng Zhang

и другие.

Chaos Solitons & Fractals, Год журнала: 2024, Номер 182, С. 114738 - 114738

Опубликована: Март 19, 2024

Язык: Английский

Процитировано

21

Dynamics analysis and feasibility verification of a 3D discrete memristive chaotic map with multi-vortex-like volume behavior DOI

Zhenyi Fan,

Xu Sun, Jingjing Zhao

и другие.

Chaos Solitons & Fractals, Год журнала: 2024, Номер 185, С. 115070 - 115070

Опубликована: Май 31, 2024

Язык: Английский

Процитировано

4

Dynamics analysis and dsp implementation of a new four-dimensional discrete memristor hyperchaotic map DOI
Chenkai Zhang, Huibin Wang, Yiyan Zhang

и другие.

Integration, Год журнала: 2025, Номер unknown, С. 102384 - 102384

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

0

Design and characteristic analysis of incommensurate-order fractional discrete memristor-based hyperchaotic system DOI
Zhixia Ding, Mingjing Li,

Liheng Wang

и другие.

Chaos An Interdisciplinary Journal of Nonlinear Science, Год журнала: 2025, Номер 35(4)

Опубликована: Апрель 1, 2025

The discrete memristive chaotic system is characterized by discontinuous phase trajectories. To address the limitations of ideal integer-order memristor model, which fails to accurately reflect characteristics practical devices, this study introduces a Grunwald–Letnikov type quadratic trivariate fractional model enhance nonlinearity and memory properties memristors. Simultaneously, it demonstrated that our satisfies essential generalized memristor. Based on newly proposed memristor, new four-dimensional hyperchaotic constructed coupling non-uniform, incommensurate-order This advances structure existing systems provides more flexible strategy for optimizing effects. dynamical behaviors are analyzed using attractor diagrams, bifurcation Lyapunov exponent spectra, permutation entropy complexity. Numerical simulation results show can exhibit larger region, higher complexity, rich multistable behaviors, such as coexistence infinitely symmetric attractors enhanced offset. Additionally, impact parameter system’s behavior revealed, with order serving tunable control variable dynamically reconfigures paths needed, thereby enabling transitions between hyperchaotic, chaotic, non-chaotic states. Furthermore, circuit was designed validate numerical results.

Язык: Английский

Процитировано

0

Enriched dynamical behavior of a novel locally active memristor-driven neuron map DOI

Tao Ma,

Jun Mou, Wanzhong Chen

и другие.

Chaos Solitons & Fractals, Год журнала: 2025, Номер 198, С. 116537 - 116537

Опубликована: Май 15, 2025

Язык: Английский

Процитировано

0

Hidden Attractors in Chaotic Systems with Nonlinear Functions DOI Creative Commons

Hafiz Muhammad Zeeshan,

R. Jaimes-Reátegui, Juan Hugo García-López

и другие.

Chaos Theory and Applications, Год журнала: 2024, Номер 6(2), С. 144 - 151

Опубликована: Май 25, 2024

In the present work, an interesting mini-review of hidden attractors in dynamical systems with associated nonlinear functions is carried out. Chaotic often possess due to their inherent complexity. These can arise various mathematical models, such as Lorenz system, Rössler or Chua's circuit. The identification and comprehension broaden our understanding complex provide new directions for future study technological development. discovery characterization chaotic have profound implications scientific disciplines, including physics, biology, engineering.

Язык: Английский

Процитировано

2

Non-degenerate multi-stable discrete chaotic system for image encryption DOI

Xiaojun Tong,

Xudong Liu,

Miao Zhang

и другие.

Nonlinear Dynamics, Год журнала: 2024, Номер 112(22), С. 20437 - 20459

Опубликована: Авг. 1, 2024

Язык: Английский

Процитировано

2

Chaotic dynamics in a class of generalized memristive maps DOI

Iram Hussan,

Manyu Zhao,

Xu Zhang

и другие.

Chaos An Interdisciplinary Journal of Nonlinear Science, Год журнала: 2024, Номер 34(11)

Опубликована: Ноя. 1, 2024

The memory effects of the memristors in nonlinear systems make generate complicated dynamics, which inspires development applications memristors. In this article, model discrete memristive with generalized Ohm’s law is introduced, where classical a linear relationship between voltage and current, relationship. To illustrate rich dynamics model, dynamical behavior three types maps memristances investigated, cubic function representing kind used, simplified characteristic famous tunnel diode. existence attractors one or two positive Lyapunov exponents (corresponding to chaotic hyperchaotic dynamics) obtained, coexistence (infinitely) many observable. A hardware device constructed implement these analog signals are experimentally acquired.

Язык: Английский

Процитировано

1

Two-memristor-based maps with infinitely many hyperchaotic attractors DOI

Iram Hussan,

Manyu Zhao,

Xu Zhang

и другие.

Chaos Solitons & Fractals, Год журнала: 2024, Номер 191, С. 115904 - 115904

Опубликована: Дек. 18, 2024

Язык: Английский

Процитировано

1

A novel discrete memristive hyperchaotic map with multi-layer differentiation, multi-amplitude modulation, and multi-offset boosting DOI

X. Wang,

Yuqi Wei, Xu Sun

и другие.

Chaos An Interdisciplinary Journal of Nonlinear Science, Год журнала: 2024, Номер 34(11)

Опубликована: Ноя. 1, 2024

In recent years, the introduction of memristors in discrete chaotic map has attracted much attention due to its enhancement complexity and controllability maps, especially fields secure communication random number generation, which have shown promising applications. this work, a three-dimensional memristive hyperchaotic (3D-DMCHM) based on cosine memristor is constructed. First, we analyze fixed points their stability, showing that can either linear point or none at all, stability depends parameters initial state map. Then, phase diagrams, bifurcation Lyapunov exponents, timing attractor basins are used complex dynamical behaviors 3D-DMCHM, revealing 3D-DMCHM enters into through period-doubling path, some special phenomena such as multi-layer differentiation, multi-amplitude control, offset boosting also observed. particular, with change conditions, there exists an only homogeneous hidden attractors mixed coexistence attractors. Finally, confirmed high tests successfully implemented it using digital signal processing circuit, demonstrating hardware feasibility.

Язык: Английский

Процитировано

0