Physics and Chemistry of the Earth Parts A/B/C, Год журнала: 2022, Номер 126, С. 103114 - 103114
Опубликована: Янв. 25, 2022
Язык: Английский
Physics and Chemistry of the Earth Parts A/B/C, Год журнала: 2022, Номер 126, С. 103114 - 103114
Опубликована: Янв. 25, 2022
Язык: Английский
Journal of Cleaner Production, Год журнала: 2022, Номер 357, С. 131927 - 131927
Опубликована: Апрель 26, 2022
Язык: Английский
Процитировано
147Sustainable Production and Consumption, Год журнала: 2022, Номер 35, С. 509 - 524
Опубликована: Дек. 10, 2022
Язык: Английский
Процитировано
97Waste Management Bulletin, Год журнала: 2024, Номер 2(2), С. 244 - 263
Опубликована: Май 9, 2024
Waste management poses a pressing global challenge, necessitating innovative solutions for resource optimization and sustainability. Traditional practices often prove insufficient in addressing the escalating volume of waste its environmental impact. However, advent Artificial Intelligence (AI) technologies offers promising avenues tackling complexities systems. This review provides comprehensive examination AI's role management, encompassing collection, sorting, recycling, monitoring. It delineates potential benefits challenges associated with each application while emphasizing imperative improved data quality, privacy measures, cost-effectiveness, ethical considerations. Furthermore, future prospects AI integration Internet Things (IoT), advancements machine learning, importance collaborative frameworks policy initiatives were discussed. In conclusion, holds significant promise enhancing practices, such as concerns, cost implications is paramount. Through concerted efforts ongoing research endeavors, transformative can be fully harnessed to drive sustainable efficient practices.
Язык: Английский
Процитировано
74Waste Management, Год журнала: 2022, Номер 143, С. 69 - 83
Опубликована: Фев. 28, 2022
Язык: Английский
Процитировано
73Smart and Sustainable Built Environment, Год журнала: 2023, Номер 13(1), С. 85 - 116
Опубликована: Июль 26, 2023
Purpose This study aims to investigate the literature related use of digital technologies for promoting circular economy (CE) in construction industry. Design/methodology/approach A comprehensive approach was adopted, involving bibliometric analysis, text-mining analysis and content meet three objectives (1) unveil evolutionary progress field, (2) identify key research themes field (3) challenges hindering implementation CE. Findings total 365 publications analysed. The results revealed eight categorised into two main clusters including “digitalisation advanced technologies” “sustainable technologies”. former involved technologies, namely machine learning, artificial intelligence, deep big data analytics object detection computer vision that were used forecasting demolition (C&D) waste generation, identification classification management. latter included such as Internet Things (IoT), blockchain building information modelling (BIM) help optimise resource use, enhance transparency sustainability practices Overall, these show great potential improving management enabling CE construction. Originality/value employs a holistic provide status-quo understanding can be utilised support Further, this underlines associated with adopting whilst also offering opportunities future improvement field.
Язык: Английский
Процитировано
62Buildings, Год журнала: 2024, Номер 14(1), С. 220 - 220
Опубликована: Янв. 14, 2024
In the last decade, despite rapid advancements in artificial intelligence (AI) transforming many industry practices, construction largely lags adoption. Recently, emergence and adoption of advanced large language models (LLMs) like OpenAI’s GPT, Google’s PaLM, Meta’s Llama have shown great potential sparked considerable global interest. However, current surge lacks a study investigating opportunities challenges implementing Generative AI (GenAI) sector, creating critical knowledge gap for researchers practitioners. This underlines necessity to explore prospects complexities GenAI integration. Bridging this is fundamental optimizing GenAI’s early stage within sector. Given unprecedented capabilities generate human-like content based on learning from existing content, we reflect two guiding questions: What will future bring industry? are delves into reflected perception literature, analyzes using programming-based word cloud frequency analysis, integrates authors’ opinions answer these questions. paper recommends conceptual implementation framework, provides practical recommendations, summarizes research questions, builds foundational literature foster subsequent expansion its allied architecture engineering domains.
Язык: Английский
Процитировано
39Automation in Construction, Год журнала: 2024, Номер 162, С. 105380 - 105380
Опубликована: Март 16, 2024
Язык: Английский
Процитировано
33Journal of Environmental Management, Год журнала: 2024, Номер 353, С. 120144 - 120144
Опубликована: Янв. 31, 2024
Язык: Английский
Процитировано
31Journal of Hazardous Materials, Год журнала: 2024, Номер 466, С. 133568 - 133568
Опубликована: Янв. 19, 2024
Язык: Английский
Процитировано
19Resources Conservation and Recycling, Год журнала: 2025, Номер 218, С. 108226 - 108226
Опубликована: Март 5, 2025
Язык: Английский
Процитировано
3