Towards A universal settling model for microplastics with diverse shapes: Machine learning breaking morphological barriers DOI
Jiaqi Zhang, Clarence Edward Choi

Water Research, Год журнала: 2024, Номер 272, С. 122961 - 122961

Опубликована: Дек. 12, 2024

Язык: Английский

Settling velocity of microplastics in turbulent open-channel flow DOI

Usama Ijaz,

Abul Basar M. Baki, Weiming Wu

и другие.

The Science of The Total Environment, Год журнала: 2024, Номер 946, С. 174179 - 174179

Опубликована: Июнь 24, 2024

Язык: Английский

Процитировано

9

Interpretable machine learning reveals transport of aged microplastics in porous media: Multiple factors co-effect DOI
Yifei Qiu,

Jingyu Niu,

Chuchu Zhang

и другие.

Water Research, Год журнала: 2025, Номер 274, С. 123129 - 123129

Опубликована: Янв. 12, 2025

Язык: Английский

Процитировано

1

Machine learning-supported determination for site-specific natural background values of soil heavy metals DOI
Jian Wu, Chengmin Huang

Journal of Hazardous Materials, Год журнала: 2025, Номер 487, С. 137276 - 137276

Опубликована: Янв. 18, 2025

Язык: Английский

Процитировано

1

Centrifugal microfluidic chip for multi-stage sorting and detection of microplastics at micron scale DOI
Feifei Feng, Wenqi Ye,

Xuecong Zhao

и другие.

Analytica Chimica Acta, Год журнала: 2025, Номер 1351, С. 343883 - 343883

Опубликована: Март 5, 2025

Язык: Английский

Процитировано

1

Microplastic pollution in Taihu lake: Spatial distribution from the lake inlet to the lake centre and vertical stratification in the water column DOI
Long Chen, Shenglü Zhou,

Bo Su

и другие.

Environmental Pollution, Год журнала: 2024, Номер 363, С. 125102 - 125102

Опубликована: Окт. 10, 2024

Язык: Английский

Процитировано

6

Towards better predicting the settling velocity of film-shaped microplastics based on experiment and simulation data DOI

Chaoqun Ji,

Jinfeng Zhang, Guangwei Liu

и другие.

Marine Pollution Bulletin, Год журнала: 2024, Номер 203, С. 116493 - 116493

Опубликована: Май 16, 2024

Язык: Английский

Процитировано

5

Principles, Challenges, and optimization of Indigenous Microalgae-Bacteria consortium for sustainable swine wastewater treatment DOI
Sheng Yu, Zhipeng Chen, Mengting Li

и другие.

Bioresource Technology, Год журнала: 2024, Номер 406, С. 131055 - 131055

Опубликована: Июнь 27, 2024

Язык: Английский

Процитировано

5

Tracing the Footprint of Microplastics: Transport Mechanism, Degradation, and Remediation in Marine Environment DOI
Arkadeep Mukherjee,

Shivani Kumar S,

Randeep Singh

и другие.

Water Air & Soil Pollution, Год журнала: 2025, Номер 236(2)

Опубликована: Янв. 24, 2025

Язык: Английский

Процитировано

0

Abundance of microplastics in a typical urban wetland in China: Association with occurrence and carbon storage DOI
Haowen Zhang, Mengjie Pu, Ming Zheng

и другие.

Journal of Hazardous Materials, Год журнала: 2025, Номер 488, С. 137451 - 137451

Опубликована: Янв. 30, 2025

Язык: Английский

Процитировано

0

Machine learning-based prediction for airflow velocity in unpressured water-conveyance tunnels DOI
Shangtuo Qian,

Xiaofeng Meng,

Pengcheng Li

и другие.

Physics of Fluids, Год журнала: 2025, Номер 37(2)

Опубликована: Фев. 1, 2025

Spillway and drainage tunnels have an open-channel flow pattern when operating under unpressured condition, above which air is driven resisted by water flow, wall friction, pressure difference. Unpressured present many airflow-related safety environmental issues, including fluctuation, gate vibration, shaft cover blow-off, odor emission; therefore, it valuable to study predict their airflow velocity. Given the difficulty in accurate prediction of velocity complicated influences hydraulic, structural, boundary parameters, this focuses on establishing high-performance models understanding importance independent coupled each parameter using machine learning. It found that Froude number, ratio free-surface width unwetted perimeter, relative ventilation area, tunnel length are four key parameters. By these parameters input combination, learning can well tunnels, achieving significantly higher performance than existing empirical theoretical models. Among models, built Random Forest XGBoost demonstrate best with R2 ≥ 0.911. The interpretability analysis reveals highest number increases generally result enhancement plays a dominant role ≤11.5, continuous increase exhibits marginal effect. area close importances, either promoting To help researchers engineers unfamiliar easily accurately GPlearn algorithm employed establish explicit expressions, validated good 0.900.

Язык: Английский

Процитировано

0