Accurate prediction and intelligent control of COD and other parameters removal from pharmaceutical wastewater using electrocoagulation coupled with catalytic ozonation process DOI
Yujie Li,

Chen Li,

Yunhan Jia

и другие.

Water Environment Research, Год журнала: 2024, Номер 96(8)

Опубликована: Авг. 1, 2024

Abstract In this study, we employed the response surface method (RSM) and long short‐term memory (LSTM) model to optimize operational parameters predict chemical oxygen demand (COD) removal in electrocoagulation‐catalytic ozonation process (ECOP) for pharmaceutical wastewater treatment. Through RSM simulation, quantified effects of reaction time, ozone dose, current density, catalyst packed rate on COD removal. Then, optimal conditions achieving a efficiency exceeding 50% were identified. After evaluating ECOP performance under optimized conditions, LSTM predicted (56.4%), close real results (54.6%) with 0.2% error. outperformed predictive capacity initial concentration effluent discharge standards, intelligent adjustment operating becomes feasible, facilitating precise control based model. This strategy holds promise enhancing treatment scenarios. Practitioner Points study utilized optimization. (56.4%) closely matched experimental (54.6%), minimal error 0.2%. demonstrated superior capacity, enabling parameter adjustments enhanced control. Intelligent improving

Язык: Английский

Interpretable prediction, classification and regulation of water quality: A case study of Poyang Lake, China DOI
Zhiyuan Yao, Zhaocai Wang,

Jinghan Huang

и другие.

The Science of The Total Environment, Год журнала: 2024, Номер 951, С. 175407 - 175407

Опубликована: Авг. 9, 2024

Язык: Английский

Процитировано

24

Applying Machine Learning Approach to Design Operational Control Strategies for a Wastewater Treatment Plant in Typical Scenarios DOI Open Access
Han Li, Chao Liu, Xiao Guo

и другие.

Water, Год журнала: 2025, Номер 17(3), С. 310 - 310

Опубликована: Янв. 23, 2025

When confronted with different influent conditions, WWTPs often lack targeted and effective operational control strategies. For the three typical scenarios of low C/N, water temperature high temperature, 441 carbon source dosage DO concentration coordination strategies were designed under premise ensuring effluent quality meets standard. The purpose was to provide clear guidance for efficient operation in scenarios. To determine optimal strategy, prediction model based on LSTM GRU constructed testing. results showed that: (1) LSTM-GRU is better than SVR RF predicting COD TN; (2) In C/N scenario, should be controlled between 0.23 t/h 0.26 t/h, ranging from 2.0 mg/L 2.6 mg/L; (3) 0.25 0.27 2.8 (4) 0.20 2.5 mg/L.

Язык: Английский

Процитировано

1

Advanced Temporal Deep Learning Framework for Enhanced Predictive Modeling in Industrial Treatment Systems DOI Creative Commons

S Ramya,

S Srinath,

Pushpa Tuppad

и другие.

Results in Engineering, Год журнала: 2025, Номер unknown, С. 104158 - 104158

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

1

Optimizing Wastewater Treatment Plant Operational Efficiency Through Integrating Machine Learning Predictive Models and Advanced Control Strategies DOI

Aparna K.G.,

R. Swarnalatha,

Murchana Changmai

и другие.

Process Safety and Environmental Protection, Год журнала: 2024, Номер 188, С. 995 - 1008

Опубликована: Май 31, 2024

Язык: Английский

Процитировано

4

A probabilistic deep learning approach to enhance the prediction of wastewater treatment plant effluent quality under shocking load events DOI Creative Commons
Hailong Yin, Yongqi Chen, Jinglin Zhou

и другие.

Water Research X, Год журнала: 2024, Номер 26, С. 100291 - 100291

Опубликована: Дек. 3, 2024

Sudden shocking load events featuring significant increases in inflow quantities or concentrations of wastewater treatment plants (WWTPs), are a major threat to the attainment treated effluents discharge quality standards. To aid real-time decision-making for stable WWTP operations, this study developed probabilistic deep learning model that comprises encoder-decoder long short-term memory (LSTM) networks with added capacity producing probability predictions, enhance robustness effluent prediction under such events. The LSTM (P-ED-LSTM) was tested an actual WWTP, where bihourly total nitrogen performed and compared classical models, including LSTM, gated recurrent unit (GRU) Transformer. It found events, P-ED-LSTM could achieve 49.7% improvement accuracy predictions concentration GRU, A higher quantile data from output, indicated value more approximate real quality. also exhibited predictive power next multiple time steps scenarios. captured approximately 90% over-limit discharges up 6 hours ahead, significantly outperforming other models. Therefore, model, its robust adaptability fluctuations, has potential broader applications across WWTPs different processes, as well providing strategies system regulation emergency conditions.

Язык: Английский

Процитировано

4

Temporal fusion transformer model for predicting differential pressure in reverse osmosis process DOI
Seunghyeon Lee,

Jaegyu Shim,

Jinuk Lee

и другие.

Journal of Water Process Engineering, Год журнала: 2025, Номер 70, С. 106914 - 106914

Опубликована: Янв. 9, 2025

Язык: Английский

Процитировано

0

Early Warning and Management of Excessive Discharge of Water Pollutants in Municipal Wastewater Treatment Plants Based on Fluctuation Coefficients DOI
Yong Ma, Yan Liu,

Kaixuan Liang

и другие.

Environmental Research, Год журнала: 2025, Номер unknown, С. 121127 - 121127

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

0

Enhanced accuracy and interpretability of nitrous oxide emission prediction of wastewater treatment plants through machine learning of univariate time series: A novel approach of learning feature reconstruction DOI
Zixuan Wang, Anlei Wei, K.S. Tang

и другие.

Journal of Water Process Engineering, Год журнала: 2025, Номер 71, С. 107263 - 107263

Опубликована: Фев. 15, 2025

Язык: Английский

Процитировано

0

Innovative multistep and synchronous soft sensing prediction of COD and NH3 in WWTPs via multimodal data and multiple attention mechanisms DOI
Junchen Li, Sijie Lin, Liang Zhang

и другие.

Water Research, Год журнала: 2025, Номер 278, С. 123405 - 123405

Опубликована: Фев. 28, 2025

Язык: Английский

Процитировано

0

Data-driven models for phosphorus forecasting in wastewater treatment plants: A tool to enhance operation DOI
Florencia Caro, Claudia Santiviago, Jimena Ferreira

и другие.

Journal of environmental chemical engineering, Год журнала: 2025, Номер unknown, С. 116259 - 116259

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

0