Evaluating Water Turbidity in Small Lakes Within the Taihu Lake Basin, Eastern China, Using Consumer-Grade UAV RGB Cameras DOI Creative Commons
Dong Xie, Yue Qiu,

Xiaojie Chen

и другие.

Drones, Год журнала: 2024, Номер 8(12), С. 710 - 710

Опубликована: Ноя. 28, 2024

Small lakes play an essential role in maintaining regional ecosystem stability and water quality. However, turbidity these is increasingly influenced by anthropogenic activities, which presents a challenge for traditional monitoring methods. This study explores the feasibility of using consumer-grade UAVs equipped with RGB cameras to monitor small within Taihu Lake Basin eastern China. By collecting imagery situ measurements, we developed validated models prediction. band indices were used combination three machine learning models, namely Interpretable Feature Transformation Regression (IFTR), Random Forest (RF), Extreme Gradient Boosting (XGBoost). Results showed that utilizing combinations R, G, B, ln(R) bands achieved highest accuracy, IFTR model demonstrating best performance (R² = 0.816, RMSE 3.617, MAE 2.997). The confirms can be effective, low-cost tool high-resolution lakes, providing valuable insights sustainable quality management. Future research should investigate advanced algorithms additional spectral features further enhance prediction accuracy adaptability.

Язык: Английский

Comprehensive Assessment of E. coli Dynamics in River Water Using Advanced Machine Learning and Explainable AI DOI

Santanu Mallik,

Bikram Saha,

Krishanu Podder

и другие.

Process Safety and Environmental Protection, Год журнала: 2025, Номер unknown, С. 106816 - 106816

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

0

Landsat monitoring reveals the history of river organic pollution across China during 1984-2023 DOI

Nuoxiao Yan,

Zhiqiang Qiu,

Chenxue Zhang

и другие.

Water Research, Год журнала: 2025, Номер unknown, С. 123210 - 123210

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

0

Observing water turbidity in Chinese rivers using Landsat series data over the past 40 years DOI

Nuoxiao Yan,

Zhiqiang Qiu,

Chenxue Zhang

и другие.

Journal of Cleaner Production, Год журнала: 2025, Номер unknown, С. 145001 - 145001

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

0

Spatial patterns of water quality and remote sensing indices from UAV-based multispectral imagery across an irrigation pond DOI Creative Commons
Seok Min Hong, Barbara J. Morgan, Matthew Stocker

и другие.

Heliyon, Год журнала: 2025, Номер 11(4), С. e42622 - e42622

Опубликована: Фев. 1, 2025

Water quality of irrigation water is an essential factor for public safety and farm sustainability. Imaging surface sources from unmanned aerial vehicles (UAVs) has become important source information. variables (WQVs) in ponds have been shown to persistent spatial patterns. The objective this work was test the hypothesis that (a) patterns can be found reflectance remote sensing indices UAV-based multispectral imagery ponds, (b) those significantly correlate with WQVs. We utilized data sampling, in-situ sensing, imaging a commercial 4-ha pond Maryland. Seventeen were measured on permanent grid during season concurrently MicaSense RedEdge camera at five wavelengths. Twenty-four computed. Spatial determined using mean relative difference method. appeared reflect differences distances banks, closeness creek meeting pond, degree stagnancy, dominant wind directions, geese congregation site. High (>0.8) Spearman correlation coefficients turbidity, photosynthetic pigments, organic carbon water. These variables' had similarities AFAI, TCARI, TCI, MCARI. Patterns E. coli strongly correlated pattern red wavelength. Given high spatiotemporal variability WQVs determining useful design surveys or monitoring aspects quality.

Язык: Английский

Процитировано

0

Carbon source dosage intelligent determination using a multi-feature sensitive back propagation neural network model DOI
Ziqi Zhou, Xiaohui Wu, Xin Dong

и другие.

Journal of Environmental Management, Год журнала: 2025, Номер 376, С. 124341 - 124341

Опубликована: Фев. 15, 2025

Язык: Английский

Процитировано

0

Spatiotemporal trends of Escherichia coli levels and their influences vary among ponds in the coastal plain of Georgia DOI Creative Commons
J. Andrew Widmer, Matthew Stocker, Jaclyn E. Smith

и другие.

Journal of Environmental Quality, Год журнала: 2025, Номер unknown

Опубликована: Март 31, 2025

Abstract Quantification of Escherichia coli in water is commonly used to understand a surface source's suitability for produce irrigation. Location, season, and physicochemical quality impact the levels E. irrigation ponds. Water samples were collected periodically at three ponds Southeast Georgia along sampling grid from July 2021 through September 2023 quantified with simultaneous collection relevant parameters. Mean relative differences (MRDs) calculated each point determine across locations. varied significantly area (perimeter, surface, subsurface) pond. The log most probable number 100 mL −1 (EC MRD) values ranged −0.25 0.33 Pond 1, −1.5 0.65 2, −1.25 3. In EC MRD correlated positively chlorophyll turbidity, negatively dissolved organic matter, oxygen (DO), specific conductance, pH MRDs. MRDs chlorophyll, DO, phycocyanin, pH, temperature. 3, nitrate MRD. This work showed analysis may reveal stable patterns factors that these ponds, though no universal covariates identified could estimate levels. These findings provide context managers wishing augment measurements other factors, or better represent variable

Язык: Английский

Процитировано

0

Design of a Fractional-Order Environmental Toxin-Plankton System in Aquatic Ecosystems: A Novel Machine Predictive Expedition with Nonlinear Autoregressive Neuroarchitectures DOI

Muhammad Junaid Ali Asif Raja,

Amir Sultan, Chuan‐Yu Chang

и другие.

Water Research, Год журнала: 2025, Номер unknown, С. 123640 - 123640

Опубликована: Апрель 1, 2025

Язык: Английский

Процитировано

0

A machine learning feature descriptor approach: Revealing potential adsorption mechanisms for SF6 decomposition product gas-sensitive materials DOI
Mingxiang Wang, Qingbin Zeng, Dachang Chen

и другие.

Journal of Hazardous Materials, Год журнала: 2024, Номер 481, С. 136567 - 136567

Опубликована: Ноя. 19, 2024

Язык: Английский

Процитировано

2

Community identification and carbon storage monitoring of Heritiera littoralis with UAV hyperspectral imaging DOI Creative Commons

Haoli Xiang,

Zhen Shen,

Longda Tan

и другие.

Ecological Indicators, Год журнала: 2024, Номер 167, С. 112653 - 112653

Опубликована: Сен. 23, 2024

Язык: Английский

Процитировано

1

Applications of unmanned vehicle systems for multi-spatial scale monitoring and management of aquatic ecosystems: A review DOI Creative Commons
Xingzhen Liu, Long Ho, Stijn Bruneel

и другие.

Ecological Informatics, Год журнала: 2024, Номер unknown, С. 102926 - 102926

Опубликована: Дек. 1, 2024

Язык: Английский

Процитировано

1