Environmental Earth Sciences, Год журнала: 2024, Номер 83(22)
Опубликована: Ноя. 1, 2024
Язык: Английский
Environmental Earth Sciences, Год журнала: 2024, Номер 83(22)
Опубликована: Ноя. 1, 2024
Язык: Английский
Journal of Hazardous Materials, Год журнала: 2025, Номер 487, С. 137136 - 137136
Опубликована: Янв. 6, 2025
Язык: Английский
Процитировано
21Chemosphere, Год журнала: 2024, Номер 368, С. 143721 - 143721
Опубликована: Ноя. 1, 2024
Язык: Английский
Процитировано
13Water Research, Год журнала: 2025, Номер 275, С. 123187 - 123187
Опубликована: Янв. 23, 2025
Язык: Английский
Процитировано
1Soil and Sediment Contamination An International Journal, Год журнала: 2025, Номер unknown, С. 1 - 18
Опубликована: Фев. 11, 2025
Язык: Английский
Процитировано
1Environmental Monitoring and Assessment, Год журнала: 2025, Номер 197(2)
Опубликована: Янв. 14, 2025
Язык: Английский
Процитировано
0Desalination and Water Treatment, Год журнала: 2025, Номер unknown, С. 101025 - 101025
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
0Scientific Reports, Год журнала: 2025, Номер 15(1)
Опубликована: Янв. 29, 2025
Air pollution is a critical global environmental issue, further exacerbated by rapid industrialization and urbanization. Accurate prediction of air pollutant concentrations essential for effective prevention control measures. The complex nature data influenced fluctuating meteorological conditions, diverse sources, propagation processes, underscores the crucial importance spatial temporal feature extraction accurately predicting concentrations. To address challenges redundancy diminished long-term accuracy observed in previous studies, this paper presents an innovative approach to predict leveraging advanced analysis deep learning methods. proposed approach, termed KSC-ConvLSTM, integrates k-nearest neighbors (KNN) algorithm, spatio-temporal attention (STA) mechanism, residual block, convolutional long short-term memory (ConvLSTM) neural network. KNN algorithm adaptively selects highly correlated neighboring domains, while enhanced with STA extracts features from input data. ConvLSTM processes output STA-ConvNet capture high-dimensional features. effectiveness KSC-ConvLSTM was validated through predictions PM2.5 Beijing its surrounding urban agglomeration. experimental results indicate that outperforms benchmark approaches single-step, multi-step, trend prediction. It demonstrates superior fitting predictive performance. Quantitatively, reduces root mean square error (RMSE) 4.216–8.458 averages 1–12 h Beijing, compared approach. findings show shows considerable potential predicting, preventing, controlling pollution.
Язык: Английский
Процитировано
0Water Air & Soil Pollution, Год журнала: 2025, Номер 236(3)
Опубликована: Янв. 30, 2025
Язык: Английский
Процитировано
0Environmental Monitoring and Assessment, Год журнала: 2025, Номер 197(3)
Опубликована: Фев. 11, 2025
Язык: Английский
Процитировано
0Environmental Science & Technology, Год журнала: 2025, Номер unknown
Опубликована: Март 17, 2025
Increasing chemical pollutants in groundwater within industrial parks pose a critical environmental challenge, necessitating innovative strategies to address contaminants with the highest risks health and ensure sustainable management. Herein, we investigated 277 from 367 sampling points across 10 rounds, totaling 1,016,590 measured data points. An prioritization index (EHPI) was proposed applied integrate multiple criteria: occurrence, migration, persistence, bioaccumulation, acute chronic toxicity, effects rank target for priority control. Thirty were classified as top-priority group 81 high-priority, metals, polycyclic aromatic hydrocarbons, haloalkanes ranking highest, while emerging of concern ranked lower. The top 6 beryllium, benzo(g,h,i)perylene, nickel, benzo(a)pyrene, chrysene, arsenic. EHPI method compared against five other weighting schemes, including AHP (analytic hierarchy process), entropy, AHP-entropy, AHP-TOPSIS (technique order preference by similarity ideal solution), entropy-TOPSIS. effectively captured integrated results more simplistic schemes. Overall, 38 are recommended inclusion control list, focusing on high detection exceedance categories. This framework provides guidance focused monitoring, assessment, highest-risk pollutants, supporting effective human protection.
Язык: Английский
Процитировано
0