Characteristic Energy Ratio Ramanujan-gram: A novel optimal multi-bands demodulation method DOI
Haiyang Pan,

Zhouqin Wu,

Jian Cheng

и другие.

IEEE Transactions on Instrumentation and Measurement, Год журнала: 2024, Номер 74, С. 1 - 9

Опубликована: Ноя. 13, 2024

Язык: Английский

EverAdapt: Continuous adaptation for dynamic machine fault diagnosis environments DOI

Edward Edward,

Mohamed Ragab, Mohamed Ragab

и другие.

Mechanical Systems and Signal Processing, Год журнала: 2025, Номер 226, С. 112317 - 112317

Опубликована: Янв. 16, 2025

Язык: Английский

Процитировано

0

Scraper conveyor gearbox fault diagnosis based on multi-source heterogeneous data fusion DOI

Long Feng,

Zeyu Ding,

Yibing Yin

и другие.

Measurement, Год журнала: 2025, Номер unknown, С. 116797 - 116797

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

0

A new bearing fault diagnosis method based on digital twin-assisted domain adaptation transfer learning DOI

Ke Jiang,

Yanping Cai, Deshuai Han

и другие.

Structural Health Monitoring, Год журнала: 2025, Номер unknown

Опубликована: Апрель 25, 2025

The demand for advanced monitoring and fault diagnosis technologies critical mechanical components is growing rapidly. Early detection of rolling bearing faults essential preventing performance degradation, unplanned downtime, safety risks. This article presents a novel method that leverages digital twin technology transfer learning to address the limitations existing approaches in terms data dependency cross-domain effectiveness. Initially, precise model developed using finite element analysis accurately simulate dynamics under various operating conditions, generating extensive simulation data. These compensate scarcity are valuable training diagnostic models. To reduce noise level real-world data, snow ablation optimizer algorithm employed optimize variational mode decomposition reduction. Subsequently, techniques utilized treat as source domain actual vibration signals target domain, enabling domain-adaptive learning. approach facilitates feature alignment knowledge transfer, further optimized through adversarial loss maximum kernel mean discrepancy metric. Moreover, deep combines residual convolutional neural networks with Transformer developed, significantly enhancing extraction classification accuracy. Experimental validation conducted on XJTU-SY dataset demonstrates proposed exhibits superior small sample outperforming methods.

Язык: Английский

Процитировано

0

Review of imbalanced fault diagnosis technology based on generative adversarial networks DOI Creative Commons
Hualin Chen, Jianan Wei, Haisong Huang

и другие.

Journal of Computational Design and Engineering, Год журнала: 2024, Номер 11(5), С. 99 - 124

Опубликована: Авг. 31, 2024

Abstract In the field of industrial production, machine failures not only negatively affect productivity and product quality, but also lead to safety accidents, so it is crucial accurately diagnose in time take appropriate measures. However, machines cannot operate with faults for extended periods, diversity fault modes results limited data collection, posing challenges building accurate prediction models. Despite recent advancements, intelligent diagnosis methods based on traditional sampling learning have shown notable progress. Nonetheless, these heavily rely human expertise, making challenging extract comprehensive feature information. To address challenges, numerous imbalance generative adversarial networks (GANs) emerged, GANs can generate realistic samples that conform distribution original data, showing promising diagnosing imbalances critical components such as bearings gears, despite their great potential, GAN face including difficulties training generating abnormal samples. whether GAN-based resampling technology or technology, there are fewer reviews noise-containing imbalance, intra- inter-class dual multi-class series other problems small samples, a lack more summary solutions above problems. Therefore, purpose this paper deeply explore under various failure modes, review analyze research basis. By suggesting future directions, aims provide guidance reference production maintenance.

Язык: Английский

Процитировано

1

In-depth research on fault diagnosis of turbine rotor utilizing NGSABO-Optimized VMD and CNN-BiLSTM DOI

Hao Wen,

H. Wang, Ronglin Wang

и другие.

Engineering Research Express, Год журнала: 2024, Номер 6(4), С. 045205 - 045205

Опубликована: Сен. 24, 2024

Abstract To solve the problem of difficulty in extracting and identifying fault types during turbine rotor operation, a diagnosis method based on improved subtraction mean optimizer (NGSABO) algorithm to optimize variational mode decomposition (VMD) CNN-BiLSTM neural network is proposed. Firstly, three improvements are made average algorithm. Secondly, optimal VMD parameter combination NGSABO adaptive selection number K penalty factor α used decompose signal, minimum sample entropy as fitness function for feature extraction. Combining convolutional bidirectional long short-term memory identify classify features. Compared with other methods, this has outstanding performance single coupled faults. The accuracy reaches 98.5714%, which good practical application value.

Язык: Английский

Процитировано

0

Federated Transfer Learning-Based Paper Breakage Fault Diagnosis DOI
Xiaoru Yu, Guojian Chen, Xianyi Zeng

и другие.

Deleted Journal, Год журнала: 2024, Номер 1(2), С. 10009 - 10009

Опубликована: Янв. 1, 2024

Язык: Английский

Процитировано

0

Local damage identification and nowcasting of mooring system using a noise-robust ConvMamba architecture DOI
Yixuan Mao,

Menglan Duan,

Hongyuan Men

и другие.

Mechanical Systems and Signal Processing, Год журнала: 2024, Номер 224, С. 112092 - 112092

Опубликована: Ноя. 12, 2024

Язык: Английский

Процитировано

0

Characteristic Energy Ratio Ramanujan-gram: A novel optimal multi-bands demodulation method DOI
Haiyang Pan,

Zhouqin Wu,

Jian Cheng

и другие.

IEEE Transactions on Instrumentation and Measurement, Год журнала: 2024, Номер 74, С. 1 - 9

Опубликована: Ноя. 13, 2024

Язык: Английский

Процитировано

0