Prediction of bearing remaining useful life based on a two-stage updated digital twin
Advanced Engineering Informatics,
Год журнала:
2025,
Номер
65, С. 103123 - 103123
Опубликована: Янв. 13, 2025
Язык: Английский
Multi-scale dynamic graph mutual information network for planet bearing health monitoring under imbalanced data
Advanced Engineering Informatics,
Год журнала:
2025,
Номер
64, С. 103096 - 103096
Опубликована: Янв. 5, 2025
Язык: Английский
DCAGGCN: A novel method for remaining useful life prediction of bearings
Reliability Engineering & System Safety,
Год журнала:
2025,
Номер
unknown, С. 110978 - 110978
Опубликована: Март 1, 2025
Язык: Английский
Dynamic Model-driven Dictionary Learning-inspired Domain Adaptation Strategy for Cross-domain Bearing Fault Diagnosis
Reliability Engineering & System Safety,
Год журнала:
2025,
Номер
unknown, С. 110905 - 110905
Опубликована: Фев. 1, 2025
Язык: Английский
Improved sand cat swarm optimization algorithm assisted GraphSAGE-GRU for remaining useful life of engine
Scientific Reports,
Год журнала:
2025,
Номер
15(1)
Опубликована: Фев. 26, 2025
Abstract
With
the
development
of
deep
learning,
potential
for
its
use
in
remaining
useful
life
(RUL)
has
substantially
increased
recent
years
due
to
powerful
data
processing
capabilities.
However,
relationships
and
interdependencies
operation
parameters
non-Euclidean
space
are
ignored
utilizing
current
learning-based
methods
during
degradation
process
engine.
To
address
this
challenge,
an
improved
sand
cat
swarm
optimization-assisted
Graph
SAmple
aggregate
gate
recurrent
unit
(ISCSO-GraphSage-GRU)
is
proposed
achieve
RUL
prediction
work.
Firstly,
maximum
information
coefficient
(MIC)
utilized
describing
interdependent
relations
measured
parameters.
Building
on
foundation,
constructed
graph
used
as
input
GraphSage-GRU
so
overcoming
shortcomings
existing
learning
methods.
Additionally,
work
optimization
(ISCSO)
improve
predicted
performance
GraphSage-GRU,
including
tent
mapping
population
initialization
a
novel
adaptive
approach
enhance
exploration
exploitation
optimization.
The
CMAPSS
dataset
validate
effectiveness
advancedness
ISCSO-GraphSage-GRU,
experimental
results
show
that
R
2
ISCSO-GraphSage-GRU
greater
than
0.99,
RMSE
less
6.
Язык: Английский
Dual graph driven-consistent representation learning method for semi-supervised fault diagnosis of rotating machinery
Advanced Engineering Informatics,
Год журнала:
2025,
Номер
65, С. 103274 - 103274
Опубликована: Март 22, 2025
Язык: Английский
A Deep Learning-Based Framework for Bearing RUL Prediction to Optimize Laser Shock Peening Remanufacturing
Applied Sciences,
Год журнала:
2024,
Номер
14(22), С. 10493 - 10493
Опубликована: Ноя. 14, 2024
Accurate
prediction
of
the
remaining
useful
life
(RUL)
bearings
is
crucial
for
maintaining
reliability
and
efficiency
industrial
systems.
This
study
introduces
a
novel
methodology
integrating
advanced
machine
learning
optimization
techniques
to
address
this
challenge.
(1)
A
transformer-attention
model
was
developed
process
segmented
vibration
signals,
effectively
capturing
complex
patterns.
The
showed
better
performance
than
traditional
approaches,
with
an
RMSE
0.989.
(2)
Deep
Neural
Network
(DNN)
designed
predict
extended
RUL
after
laser
shock
peening
(LSP)
remanufacturing.
fruit
fly
(FFO)
algorithm
employed
optimize
remanufacturing
parameters;
29.33%
improvement
achieved
in
fitness
compared
baseline.
(3)
DNN
predictions
were
validated
against
Finite
Element
Analysis
(FEA)
simulations,
low
relative
error
2.5%
5.8%;
good
accuracy
effects
optimized
LSP
parameters
on
bearing
extension.
Язык: Английский