Cross-property deep transfer learning framework for enhanced predictive analytics on small materials data DOI Creative Commons
Vishu Gupta, Kamal Choudhary, Francesca Tavazza

и другие.

Nature Communications, Год журнала: 2021, Номер 12(1)

Опубликована: Ноя. 15, 2021

Abstract Artificial intelligence (AI) and machine learning (ML) have been increasingly used in materials science to build predictive models accelerate discovery. For selected properties, availability of large databases has also facilitated application deep (DL) transfer (TL). However, unavailability datasets for a majority properties prohibits widespread DL/TL. We present cross-property deep-transfer-learning framework that leverages trained on small different properties. test the proposed 39 computational two experimental find TL with only elemental fractions as input outperform ML/DL from scratch even when they are allowed use physical attributes input, 27/39 (≈ 69%) both datasets. believe can be widely useful tackle data challenge applying AI/ML science.

Язык: Английский

Computational understanding and multiscale simulation of secondary batteries DOI
Yan Yuan,

Bin Wang,

Jinhao Zhang

и другие.

Energy storage materials, Год журнала: 2025, Номер unknown, С. 104009 - 104009

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

2

Neural Ordinary Differential Equations for Forecasting and Accelerating Photon Correlation Spectroscopy DOI
Andrew H. Proppe, Kin Long Kelvin Lee, Weiwei Sun

и другие.

The Journal of Physical Chemistry Letters, Год журнала: 2025, Номер unknown, С. 518 - 524

Опубликована: Янв. 6, 2025

Evaluating the quantum optical properties of solid-state single-photon emitters is a time-consuming task that typically requires interferometric photon correlation experiments. Photon Fourier spectroscopy (PCFS) one such technique measures time-resolved single-emitter line shapes and offers additional spectral information over Hong–Ou–Mandel two-photon interference but long experimental acquisition times. Here, we demonstrate neural ordinary differential equation model, g2NODE, can forecast complete noise-free interferometry experiment from small subset noisy functions. We this for simulated data, where g2NODE utilizes 10–20 measured functions to create entire denoised interferograms up 200 stage positions, enabling 20-fold speedup in time hours minutes. Our work presents new deep learning approach greatly accelerate use as an characterization tool novel emitter materials.

Язык: Английский

Процитировано

2

Application of machine learning in adsorption energy storage using metal organic frameworks: A review DOI

Nokubonga P. Makhanya,

Michael Kumi, Charles Mbohwa

и другие.

Journal of Energy Storage, Год журнала: 2025, Номер 111, С. 115363 - 115363

Опубликована: Янв. 13, 2025

Язык: Английский

Процитировано

2

MOSAEC-DB: a comprehensive database of experimental metal–organic frameworks with verified chemical accuracy suitable for molecular simulations DOI Creative Commons
Marco Gibaldi,

Anna Kapeliukha,

Andrew J. P. White

и другие.

Chemical Science, Год журнала: 2025, Номер unknown

Опубликована: Янв. 1, 2025

MOSAEC-DB represents the largest and most diverse dataset of experimental MOFs suitable for simulation machine learning applications. Novel approaches utilizing metal oxidation states enhance its chemical accuracy relative to past MOF databases.

Язык: Английский

Процитировано

2

Cross-property deep transfer learning framework for enhanced predictive analytics on small materials data DOI Creative Commons
Vishu Gupta, Kamal Choudhary, Francesca Tavazza

и другие.

Nature Communications, Год журнала: 2021, Номер 12(1)

Опубликована: Ноя. 15, 2021

Abstract Artificial intelligence (AI) and machine learning (ML) have been increasingly used in materials science to build predictive models accelerate discovery. For selected properties, availability of large databases has also facilitated application deep (DL) transfer (TL). However, unavailability datasets for a majority properties prohibits widespread DL/TL. We present cross-property deep-transfer-learning framework that leverages trained on small different properties. test the proposed 39 computational two experimental find TL with only elemental fractions as input outperform ML/DL from scratch even when they are allowed use physical attributes input, 27/39 (≈ 69%) both datasets. believe can be widely useful tackle data challenge applying AI/ML science.

Язык: Английский

Процитировано

99