Journal of Hazardous Materials, Год журнала: 2024, Номер 470, С. 134161 - 134161
Опубликована: Март 28, 2024
Язык: Английский
Journal of Hazardous Materials, Год журнала: 2024, Номер 470, С. 134161 - 134161
Опубликована: Март 28, 2024
Язык: Английский
Environmental Science & Technology, Год журнала: 2023, Номер 57(46), С. 18282 - 18295
Опубликована: Апрель 28, 2023
Fine particulate matter (PM2.5) chemical composition has strong and diverse impacts on the planetary environment, climate, health. These effects are still not well understood due to limited surface observations uncertainties in model simulations. We developed a four-dimensional spatiotemporal deep forest (4D-STDF) estimate daily PM2.5 at spatial resolution of 1 km China since 2000 by integrating measurements species from high-density observation network, satellite retrievals, atmospheric reanalyses, Cross-validation results illustrate reliability sulfate (SO42-), nitrate (NO3-), ammonium (NH4+), chloride (Cl-) estimates, with high coefficients determination (CV-R2) ground-based 0.74, 0.75, 0.71, 0.66, average root-mean-square errors (RMSE) 6.0, 6.6, 4.3, 2.3 μg/m3, respectively. The three components secondary inorganic aerosols (SIAs) account for 21% 20% 14% (NH4+) total mass eastern China; we observed significant reductions 40-43% between 2013 2020, slowing down 2018. Comparatively, ratio SIA increased 7% across except Beijing nearby areas, accelerating recent years. SO42- been dominant component China, although it was surpassed NO3- some e.g., Beijing-Tianjin-Hebei region 2016. SIA, accounting nearly half (∼46%) mass, drove explosive formation winter haze episodes North Plain. A sharp decline concentrations an increase SIA-to-PM2.5 ratios during COVID-19 lockdown were also revealed, reflecting enhanced oxidation capacity particles.
Язык: Английский
Процитировано
97The Innovation, Год журнала: 2024, Номер 5(5), С. 100691 - 100691
Опубликована: Авг. 23, 2024
Public summary•What does AI bring to geoscience? has been accelerating and deepening our understanding of Earth Systems in an unprecedented way, including the atmosphere, lithosphere, hydrosphere, cryosphere, biosphere, anthroposphere interactions between spheres.•What are noteworthy challenges As we embrace huge potential geoscience, several arise reliability interpretability, ethical issues, data security, high demand cost.•What is future The synergy traditional principles modern AI-driven techniques holds immense promise will shape trajectory geoscience upcoming years.AbstractThis paper explores evolution geoscientific inquiry, tracing progression from physics-based models data-driven approaches facilitated by significant advancements artificial intelligence (AI) collection techniques. Traditional models, which grounded physical numerical frameworks, provide robust explanations explicitly reconstructing underlying processes. However, their limitations comprehensively capturing Earth's complexities uncertainties pose optimization real-world applicability. In contrast, contemporary particularly those utilizing machine learning (ML) deep (DL), leverage extensive glean insights without requiring exhaustive theoretical knowledge. ML have shown addressing science-related questions. Nevertheless, such as scarcity, computational demands, privacy concerns, "black-box" nature hinder seamless integration into geoscience. methodologies hybrid presents alternative paradigm. These incorporate domain knowledge guide methodologies, demonstrate enhanced efficiency performance with reduced training requirements. This review provides a comprehensive overview research paradigms, emphasizing untapped opportunities at intersection advanced It examines major showcases advances large-scale discusses prospects that landscape outlines dynamic field ripe possibilities, poised unlock new understandings further advance exploration.Graphical abstract
Язык: Английский
Процитировано
59Nature Geoscience, Год журнала: 2024, Номер unknown
Опубликована: Сен. 18, 2024
Язык: Английский
Процитировано
55Environmental Pollution, Год журнала: 2025, Номер 368, С. 125683 - 125683
Опубликована: Янв. 12, 2025
Язык: Английский
Процитировано
2The Lancet Regional Health - Western Pacific, Год журнала: 2023, Номер 32, С. 100679 - 100679
Опубликована: Янв. 13, 2023
Язык: Английский
Процитировано
42Journal of Hazardous Materials, Год журнала: 2023, Номер 457, С. 131827 - 131827
Опубликована: Июнь 10, 2023
Язык: Английский
Процитировано
27Environmental Pollution, Год журнала: 2023, Номер 328, С. 121647 - 121647
Опубликована: Апрель 14, 2023
Язык: Английский
Процитировано
24Environment International, Год журнала: 2024, Номер 184, С. 108464 - 108464
Опубликована: Фев. 1, 2024
Epidemiological evidence on the association of PM2.5 (particulate matter with aerodynamic diameter ≤ 2.5 μm) and its specific components hypertension blood pressure is limited. We applied information participants from World Health Organization's (WHO) Study Global Ageing Adult (SAGE) to estimate associations long-term mass chemical exposure (BP) incidence in Chinese adults ≥ 50 years during 2007–2018. Generalized linear mixed model Cox proportional hazard were investigate effects BP, respectively. Each interquartile range (IQR = 16.80 μg/m3) increase one-year average concentration was associated a 17 % risk (HR 1.17, 95 CI: 1.10, 1.24), population attributable fraction (PAF) 23.44 (95 14.69 %, 31.55 %). IQR μg/m3 also related increases systolic (SBP) by 2.54 mmHg CI:1.99, 3.10), diastolic (DBP) 1.36 1.04, 1.68). Additionally, SO42−, NO3−, NH4+, OM, BC positively an increased elevated pressure. These results indicate that may be major drivers escalation diseases.
Язык: Английский
Процитировано
16Environment International, Год журнала: 2024, Номер 183, С. 108417 - 108417
Опубликована: Янв. 1, 2024
The association of specific PM2.5 chemical constituents with childhood overweight or obesity (OWOB) remain unclear. Furthermore, the long-term impacts exposure on trajectory children's body mass index (BMI) have not been explored. We conducted a longitudinal study among 1,450,830 Chinese children aged 6-19 years from Beijing and Zhongshan in China during 2005-2018 to examine associations its incident OWOB risk. extracted five main component Tracking Air Pollution (TAP) dataset. Cox proportional hazards models were applied quantify exposure-response associations. further performed principal analysis (PCA) handle multi-collinearity used quantile g-computation (QGC) approach analyze mixtures. Additionally, we selected 125,863 at least 8 physical examination measurements combined group-based (GBTM) multinomial logistic regression explore BMI Z-score trajectories years. observed each interquartile range increment was significantly associated 5.1% increase risk (95% confidence Interval [CI]: 1.036-1.066). also found black carbon, sulfate, organic matter, often linked fossil combustion, had comparable larger estimates effect (HR = 1.139-1.153) than PM2.5. Exposure mass, nitrate, ammonium, matter carbon an increased odds being assigned persistent trajectory. Our findings provide evidence that mainly fuel combustion may perceptible influence China. Moreover, contributes lager trajectories.
Язык: Английский
Процитировано
12The Science of The Total Environment, Год журнала: 2024, Номер 916, С. 170009 - 170009
Опубликована: Янв. 21, 2024
Язык: Английский
Процитировано
11