Chinese Science Bulletin (Chinese Version), Год журнала: 2024, Номер unknown
Опубликована: Авг. 1, 2024
Chinese Science Bulletin (Chinese Version), Год журнала: 2024, Номер unknown
Опубликована: Авг. 1, 2024
The Science of The Total Environment, Год журнала: 2024, Номер 949, С. 174724 - 174724
Опубликована: Июль 26, 2024
Язык: Английский
Процитировано
8npj Climate and Atmospheric Science, Год журнала: 2024, Номер 7(1)
Опубликована: Авг. 22, 2024
Abstract Peroxyacetyl nitrate (PAN) is an important photochemical product and affects ozone (O 3 ) formation in the troposphere. Yet, long-term observation of PAN remains scarce, limiting full understanding its impacts on pollution. Here, we observed from 2018 to 2022 urban Fuzhou, Southeastern China. We found that, contrast upward trend O , concentrations shown a significant decreasing at average rate −0.07 ppb/year. NO 2 CO, UVB, T contributed according Machine learning analyses, while effect -represented atmospheric oxidation capacity was fluctuating year year. Chemical box model revealed active PA production depletion Fuzhou. Thus, despite concentration, chemistry effectively promoted by rising RO x levels, leading increases 2.18%–58.4% net different years. Our results provide valuable insights into evolution pollution environments.
Язык: Английский
Процитировано
6ACS ES&T Engineering, Год журнала: 2025, Номер unknown
Опубликована: Фев. 18, 2025
Язык: Английский
Процитировано
0Water, Год журнала: 2025, Номер 17(4), С. 603 - 603
Опубликована: Фев. 19, 2025
Accurate prediction of total phosphorus (TP) in water quality is critical for monitoring ecosystem stability and eutrophication status. However, the distribution natural environmental data such as tends to undergo complex changes over time. Stable reliable results not only require a certain degree periodicity but also that TP model be highly adaptable random fluctuations distributional drifts data. Therefore, it challenge adapt models drift In this study, spatial temporal variations Yangtze River from 2019 2023 were described detail. Using mining techniques, time series analyzed generate forecast dataset focusing on fluctuations. By comparing various models, MTS-Mixers was finally selected experimental baseline different modes used prediction. The show after parameter adjustment, can achieve high accuracy (MAE: 0.145; MSE: 0.277), which guarantee at 20 steps. These research comprehensively reliably predicted provided effective methods tools management. They provide scientific basis protection improvement Basin help formulation implementation relevant policies promote sustainable development environment. addition, study confirms applicability machine learning hydrological responding changes.
Язык: Английский
Процитировано
0Atmospheric Environment, Год журнала: 2025, Номер unknown, С. 121258 - 121258
Опубликована: Апрель 1, 2025
Язык: Английский
Процитировано
0Bioresource Technology, Год журнала: 2024, Номер 419, С. 132028 - 132028
Опубликована: Дек. 28, 2024
Язык: Английский
Процитировано
2The Science of The Total Environment, Год журнала: 2024, Номер 929, С. 172415 - 172415
Опубликована: Апрель 15, 2024
Язык: Английский
Процитировано
1Research Square (Research Square), Год журнала: 2024, Номер unknown
Опубликована: Дек. 25, 2024
Язык: Английский
Процитировано
0Chinese Science Bulletin (Chinese Version), Год журнала: 2024, Номер unknown
Опубликована: Авг. 1, 2024
Процитировано
0