Estimation of phytoplankton community composition from satellite data using a fuzzy and probabilistic combination model in mountainous reservoirs: A case of Huating Lake in spring and summer DOI Creative Commons
Yixuan Qiu, Zhongya Fan,

Huiyun Feng

и другие.

Ecological Informatics, Год журнала: 2025, Номер unknown, С. 103153 - 103153

Опубликована: Апрель 1, 2025

Язык: Английский

Pivotal role of snow depth, local atmospheric conditions, and large-scale climate signals on ice thinning in Finnish lakes DOI
Danial Naderian, Roohollah Noori, Sayed M. Bateni

и другие.

The Science of The Total Environment, Год журнала: 2025, Номер 966, С. 178715 - 178715

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

2

Hybrid emotional neural networks and novel multi-model stacking algorithms for multi-lake water level fluctuation modeling DOI Creative Commons
Gebre Gelete, Tagesse Gichamo, Tesfalem Abraham

и другие.

Earth Science Informatics, Год журнала: 2025, Номер 18(2)

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

0

Impact of seasonal climate variability on constructed wetland treatment efficiency DOI Creative Commons

Charlotte Dykes,

Jonathan Pearson, Gary D. Bending

и другие.

Journal of Water Process Engineering, Год журнала: 2025, Номер 72, С. 107350 - 107350

Опубликована: Март 13, 2025

Язык: Английский

Процитировано

0

A long-read sequencing approach to high-resolution profiling of bacterioplankton diversity in a shallow freshwater lake DOI Creative Commons
Stephanie O. Castro Márquez, Viktor R. Tóth, Sofia M. Kolchanova

и другие.

Scientific Reports, Год журнала: 2025, Номер 15(1)

Опубликована: Апрель 10, 2025

Lake Balaton, a large shallow freshwater lake in Hungary, exhibits diverse bacterioplankton communities influenced by various environmental factors. This study aims to evaluate the bacterial diversity Balaton using long-read approach 16 S rRNA gene sequencing. Water samples were collected from wide network of 33 locations across lake's four basins and analyzed for community composition. Sequencing results revealed high taxonomic with significant zonal variations. Dominant families included Comamonadaceae, Burkholderiaceae, Methylophilaceae. Environmental parameters such as temperature, pH, CDOM found significantly correlate abundance diversity. The underscores utility portability sequencing technology assessing microbial provides insights into ecological dynamics lakes.

Язык: Английский

Процитировано

0

New insights on biomass production in lakes: Integration of Carlson trophic state index and vertically generalized production model DOI

Mohammad Reza Badamian,

Roohollah Noori, Changhyun Jun

и другие.

Ecological Indicators, Год журнала: 2025, Номер 174, С. 113450 - 113450

Опубликована: Апрель 11, 2025

Язык: Английский

Процитировано

0

Application of an improved LSTM model based on FECA and CEEMDAN VMD decomposition in water quality prediction DOI Creative Commons

Jie Long,

Chong Lu,

Yiming Lei

и другие.

Scientific Reports, Год журнала: 2025, Номер 15(1)

Опубликована: Апрель 14, 2025

To address the limitations of existing water quality prediction models in handling non-stationary data and capturing multi-scale features, this study proposes a hybrid model integrating Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN), Variational (VMD), Long Short-Term Memory Network (LSTM), Frequency-Enhanced Channel Attention (FECA). The aims to improve accuracy robustness for complex dynamics, which is critical environmental protection sustainable resource management. First, CEEMDAN Sample Entropy (SE) were used decompose raw into interpretable components filter noise. Then, VMD-enhanced LSTM architecture embedded FECA was developed adaptively prioritize frequency-specific thereby improving model's ability handle nonlinear patterns. Results show that successful predicting all six indicators: NH₃-N (ammonia nitrogen), DO (dissolved oxygen), pH, TN (total TP phosphorus), CODMn (chemical oxygen demand, permanganate method). achieved Nash-Sutcliffe Efficiency (NSE) values ranging from 0.88 0.99. Using dissolved (DO) as an example, reduced Mean Absolute Percentage Error (MAPE) by 0.12% increased coefficient determination (R2) 0.20% compared baseline methods. This work provides robust framework real-time monitoring supports decision making pollution control ecosystem

Язык: Английский

Процитировано

0

AI-driven opportunities and challenges in lake remote sensing DOI Creative Commons
Hongtao Duan,

Zhigang Cao,

Juhua Luo

и другие.

Опубликована: Апрель 1, 2025

Процитировано

0

Evaluating the applicability of machine learning and deep learning models for predicting cyanobacterial alert levels in a drinking water reservoir DOI

Seohyun Byeon,

Hankyu Lee, Jae-Ki Shin

и другие.

Journal of Water Process Engineering, Год журнала: 2025, Номер 73, С. 107685 - 107685

Опубликована: Апрель 18, 2025

Язык: Английский

Процитировано

0

Estimation of phytoplankton community composition from satellite data using a fuzzy and probabilistic combination model in mountainous reservoirs: A case of Huating Lake in spring and summer DOI Creative Commons
Yixuan Qiu, Zhongya Fan,

Huiyun Feng

и другие.

Ecological Informatics, Год журнала: 2025, Номер unknown, С. 103153 - 103153

Опубликована: Апрель 1, 2025

Язык: Английский

Процитировано

0