3 Biotech, Год журнала: 2024, Номер 14(12)
Опубликована: Ноя. 15, 2024
Язык: Английский
3 Biotech, Год журнала: 2024, Номер 14(12)
Опубликована: Ноя. 15, 2024
Язык: Английский
GCB Bioenergy, Год журнала: 2024, Номер 16(5)
Опубликована: Апрель 11, 2024
Abstract Lignocellulosic biomass is an abundant renewable feedstock, but its complex structure of lignocellulose poses barriers to enzymatic hydrolysis and fermentation. Fungi possess diverse lignocellulolytic enzyme systems that synergistically deconstruct into soluble sugars for This review elucidates recent advances in understanding the molecular mechanisms underpinning fungal degradation lignocellulose. We analyze major classes tailored by fungi depolymerize cellulose, hemicellulose, lignin. Highlighted are concerted actions intimate partnerships between these biomass‐degrading enzymes. Current challenges impeding large‐scale implementation discussed, along with emerging biotechnological opportunities. Advanced pretreatments, high‐throughput engineering platforms, machine learning or artificial intelligence‐guided cocktail optimization represent promising ways improve hydrolytic efficiencies. Elucidating coordinated interplay regulation machinery can facilitate biotechnology platforms. Harnessing efficiency deconstruction promises enhance development biorefinery processes sustainable bioenergy.
Язык: Английский
Процитировано
10Food Chemistry, Год журнала: 2025, Номер unknown, С. 144047 - 144047
Опубликована: Март 1, 2025
Язык: Английский
Процитировано
2Bioresources and Bioprocessing, Год журнала: 2024, Номер 11(1)
Опубликована: Янв. 2, 2024
Abstract Functional lipids, primarily derived through the modification of natural lipids by various processes, are widely acknowledged for their potential to impart health benefits. In contrast chemical methods lipid modification, enzymatic catalysis offers distinct advantages, including high selectivity, mild operating conditions, and reduced byproduct formation. Nevertheless, enzymes face challenges in industrial applications, such as low activity, stability, undesired selectivity. To address these challenges, protein engineering techniques have been implemented enhance enzyme performance functional synthesis. This article aims review recent advances engineering, encompassing approaches from directed evolution rational design, with goal improving properties lipid-modifying enzymes. Furthermore, explores future prospects associated enzyme-catalyzed
Язык: Английский
Процитировано
9Tenside Surfactants Detergents, Год журнала: 2024, Номер 61(4), С. 285 - 296
Опубликована: Апрель 29, 2024
Abstract This review critically analyzes the incorporation of artificial intelligence (AI) in surface chemistry and catalysis to emphasize revolutionary impact AI techniques this field. The current examines various studies that using techniques, including machine learning (ML), deep (DL), neural networks (NNs), catalysis. It reviews literature on application models predicting adsorption behaviours, analyzing spectroscopic data, improving catalyst screening processes. combines both theoretical empirical provide a comprehensive synthesis findings. demonstrates applications have made remarkable progress properties nanostructured catalysts, discovering new materials for energy conversion, developing efficient bimetallic catalysts CO 2 reduction. AI-based analyses, particularly advanced NNs, provided significant insights into mechanisms dynamics catalytic reactions. will be shown plays crucial role by significantly accelerating discovery enhancing process optimization, resulting enhanced efficiency selectivity. mini-review highlights challenges data quality, model interpretability, scalability, ethical, environmental concerns AI-driven research. importance continued methodological advancements responsible implementation
Язык: Английский
Процитировано
9Journal of Agricultural and Food Chemistry, Год журнала: 2024, Номер 72(19), С. 10995 - 11001
Опубликована: Май 3, 2024
The titer of the microbial fermentation products can be increased by enzyme engineering. l-Sorbosone dehydrogenase (SNDH) is a key in production 2-keto-l-gulonic acid (2-KLG), which precursor vitamin C. Enhancing activity SNDH may have positive impact on 2-KLG production. In this study, computer-aided semirational design was conducted. Based analysis SNDH's substrate pocket and multiple sequence alignment, three modification strategies were established: (1) expanding entrance pocket, (2) engineering residues within (3) enhancing electron transfer SNDH. Finally, mutants S453A, L460V, E471D obtained, whose specific 20, 100, 10%, respectively. addition, ability Gluconobacter oxidans WSH-004 to synthesize improved eliminating H2O2. This study provides mutant enzymes metabolic for microbial-fermentation-based 2-KLG.
Язык: Английский
Процитировано
8Trends in Food Science & Technology, Год журнала: 2024, Номер unknown, С. 104850 - 104850
Опубликована: Дек. 1, 2024
Язык: Английский
Процитировано
7Fuel, Год журнала: 2025, Номер 387, С. 134343 - 134343
Опубликована: Янв. 18, 2025
Язык: Английский
Процитировано
1Polymer Bulletin, Год журнала: 2024, Номер 81(17), С. 15823 - 15840
Опубликована: Авг. 1, 2024
Язык: Английский
Процитировано
6Industrial Crops and Products, Год журнала: 2024, Номер 222, С. 119693 - 119693
Опубликована: Сен. 19, 2024
Язык: Английский
Процитировано
6Current Opinion in Systems Biology, Год журнала: 2023, Номер 37, С. 100487 - 100487
Опубликована: Ноя. 21, 2023
High-throughput (HT) methodologies are extensively applied in synthetic biology for the rapid enrichment and selection of desired properties from a wide range genetic diversity. In order to effectively analyze these vast variants, HT tools must offer parallel experiments compact reaction capabilities enhance overall throughput. Here, we discuss about various aspects three representative high-throughput screening (HTS) systems: microwell-, droplet-, single cell-based screening. These systems can be categorized based on their volume, which turn determines associated technology, machinery, supporting applications. Furthermore, techniques that rapidly connects numerous genotypes phenotypes, have evolved precision predictions through integration digital technologies like machine learning artificial intelligence. The use advanced within biofoundry will enable analysis extensive diversity, making it driving force advancement biology.
Язык: Английский
Процитировано
10