Elsevier eBooks, Год журнала: 2023, Номер unknown, С. 1 - 12
Опубликована: Сен. 12, 2023
Язык: Английский
Elsevier eBooks, Год журнала: 2023, Номер unknown, С. 1 - 12
Опубликована: Сен. 12, 2023
Язык: Английский
Journal of Chemical Theory and Computation, Год журнала: 2025, Номер unknown
Опубликована: Май 23, 2025
Machine learning (ML) potentials have become a well-established tool for providing inexpensive, yet quantum-mechanically accurate, atomistic simulations. Here, we extend our current modeling procedure, based on Gaussian process regression, to include derivative observations into the ML models. We directly compare three system-energy approaches quantum mechanically derived quantities: (i) atomic energies, (ii) total system energy, and (iii) energy with observations. find that has best performance across board, achieving chemical accuracy fewer training data. In addition, both force errors are around an order of magnitude lower when added models in some cases. follow up discussion multiple advantages proposed method brings, such as improved data set availability ability easily dispersion interactions. Additionally, discuss use cases new approach field FFLUX.
Язык: Английский
Процитировано
0Elsevier eBooks, Год журнала: 2023, Номер unknown, С. 1 - 12
Опубликована: Сен. 12, 2023
Язык: Английский
Процитировано
0