
Journal of Fluorine Chemistry, Год журнала: 2024, Номер 280, С. 110366 - 110366
Опубликована: Окт. 24, 2024
Язык: Английский
Journal of Fluorine Chemistry, Год журнала: 2024, Номер 280, С. 110366 - 110366
Опубликована: Окт. 24, 2024
Язык: Английский
Current Opinion in Chemical Engineering, Год журнала: 2025, Номер 47, С. 101093 - 101093
Опубликована: Янв. 27, 2025
Язык: Английский
Процитировано
2European Journal of Pharmaceutical Sciences, Год журнала: 2025, Номер unknown, С. 107102 - 107102
Опубликована: Апрель 1, 2025
In the pharmaceutical manufacturing industry, continuous production methods have been recognised as providing several benefits compared to traditional batch production. These include increased flexibility, higher product output, enhanced quality assurance through better monitoring techniques, and more consistent distribution of Active Pharmaceutical Ingredients (APIs). Despite these clear advantages, there is a lack research focused on simultaneous optimisation multiple sub-processes in manufacturing. This study explores processes production, explicitly targeting mefenamic acid using wet milling (WM) mixed-suspension mixed-product removal (MSMPR). We employ data-driven evolutionary algorithms address many-objective problems (MaOPs). High-fidelity model-generated data generated via General Process Modelling System (gPROMS) subsequently utilised develop simpler surrogate models based Radial Basis Function Neural Network (RBFNN). enables very fast simulations, suitable for use with computationally intensive machine learning algorithms. Utilising algorithms, are used model-based process optimisation. The efficacy MaOP approach evaluated range numeric visual performance indicators. Our findings underscore viability integrating high-fidelity discern functional relationships between dependent variables (objective functions) independent (decision variables), robust framework within domain. approximated solutions are, average, 58% than obtained from Latin hypercube sampling. chosen optimal can form basis parameter setting upcoming experimental campaigns. significance this work demonstration, first time, pharmaceuticals simple derived high fidelity simulations Machine Learning.
Язык: Английский
Процитировано
0European Journal of Pharmaceutical Sciences, Год журнала: 2025, Номер unknown, С. 107116 - 107116
Опубликована: Май 1, 2025
Язык: Английский
Процитировано
0IGI Global eBooks, Год журнала: 2025, Номер unknown, С. 153 - 208
Опубликована: Июнь 4, 2025
Spectroscopic methods represent key tools for identifying organic reaction mechanisms and obtaining information about molecular structures transient intermediates. However, the broad repertoire of reactions, frequent difficulties in tracking compound intermediates, challenges interpretation spectral data can hamper progress lead to misconceptions. This chapter aims explain these alongside kinetic studies isotope effects comprehensively understand dynamics. explains how nuclear magnetic resonance, infrared spectroscopy, ultraviolet‒visible computer-based mass spectrometry reveal interactions highlights importance such approaches through comparison simulations. The finalized section demonstrates need a variety perspectives overall explanations promoting synthesis complex compounds. field looks forward significant with further real-time education on reliable machine learning using spectroscopy.
Язык: Английский
Процитировано
0Journal of Fluorine Chemistry, Год журнала: 2024, Номер 280, С. 110366 - 110366
Опубликована: Окт. 24, 2024
Язык: Английский
Процитировано
0