Prediction of pH Value of Aqueous Acidic and Basic Deep Eutectic Solvent Using COSMO-RS σ Profiles’ Molecular Descriptors DOI Creative Commons
Manuela Panić, Mia Radović, Marina Cvjetko Bubalo

и другие.

Molecules, Год журнала: 2022, Номер 27(14), С. 4489 - 4489

Опубликована: Июль 13, 2022

The aim of this work was to develop a simple and easy-to-apply model predict the pH values deep eutectic solvents (DESs) over wide range that can be used in daily work. For purpose, 38 different DESs were measured (ranging from 0.36 9.31) mathematically interpreted. To mathematical models, first numerically described using σ profiles generated with COSMOtherm software. After DESs’ description, following models used: (i) multiple linear regression (MLR), (ii) piecewise (PLR), (iii) artificial neural networks (ANNs) link experimental descriptors. Both PLR ANN found applicable very high goodness fit (R2independent validation > 0.8600). Due good correlation predicted values, profile could as DES molecular descriptor for prediction their values.

Язык: Английский

Predicting the Surface Tension of Deep Eutectic Solvents Using Artificial Neural Networks DOI Creative Commons
Tarek Lemaoui, Abir Boublia, Ahmad S. Darwish

и другие.

ACS Omega, Год журнала: 2022, Номер 7(36), С. 32194 - 32207

Опубликована: Сен. 1, 2022

Studies on deep eutectic solvents (DESs), a new class of "green" solvents, are attracting increasing attention from researchers, as evidenced by the rapidly growing number publications in literature. One main advantages DESs is that they tailor-made and therefore, potential extremely large. It essential to have computational methods capable predicting physicochemical properties DESs, which needed many industrial applications research. Surface tension one most important required applications. In this work, we report relatively generalized artificial neural network (ANN) for surface DESs. The database used can be considered comprehensive because it contains 1571 data points 133 different DES mixtures 520 compositions prepared 18 ions 63 hydrogen bond donors temperature range 277-425 K. ANN model uses molecular parameter inputs derived conductor-like screening real (Sσ-profiles). training testing results show best performing architecture consisted two hidden layers with 15 neurons each (9-15-15-1). proposed was excellent R2 values 0.986 0.977 were obtained testing, respectively, an overall average absolute relative deviation 2.20%. models represent initiative promote development robust based only parameters, leading savings investigation time resources.

Язык: Английский

Процитировано

79

Experimental and detailed DFT/MD simulation of α-aminophosphonates as promising corrosion inhibitor for XC48 carbon steel in HCl environment DOI

Ouahiba Moumeni,

Mouna Mehri,

Rachida Kerkour

и другие.

Journal of the Taiwan Institute of Chemical Engineers, Год журнала: 2023, Номер 147, С. 104918 - 104918

Опубликована: Май 15, 2023

Язык: Английский

Процитировано

74

Corrosion inhibition of Schiff base and their metal complexes with [Mn (II), Co (II) and Zn (II)]: Experimental and quantum chemical studies DOI

Chérifa Boulechfar,

Hana Ferkous,

Amel Delimi

и другие.

Journal of Molecular Liquids, Год журнала: 2023, Номер 378, С. 121637 - 121637

Опубликована: Март 15, 2023

Язык: Английский

Процитировано

62

The curious case of polyphenols as green corrosion inhibitors: a review on their extraction, design, and applications DOI

Meriem Gabsi,

Hana Ferkous,

Amel Delimi

и другие.

Environmental Science and Pollution Research, Год журнала: 2023, Номер 30(21), С. 59081 - 59105

Опубликована: Апрель 5, 2023

Язык: Английский

Процитировано

58

Machine learning approach to map the thermal conductivity of over 2,000 neoteric solvents for green energy storage applications DOI
Tarek Lemaoui, Ahmad S. Darwish, Ghaiath Almustafa

и другие.

Energy storage materials, Год журнала: 2023, Номер 59, С. 102795 - 102795

Опубликована: Апрель 30, 2023

Язык: Английский

Процитировано

52

Synergy of garlic extract and deep eutectic solvents as promising natural Antibiotics: Experimental and COSMO-RS DOI
Abdenacer Mouffok, Djedjiga Bellouche,

Inés Debbous

и другие.

Journal of Molecular Liquids, Год журнала: 2023, Номер 375, С. 121321 - 121321

Опубликована: Янв. 28, 2023

Язык: Английский

Процитировано

49

Predicting the CO2 Capture Capability of Deep Eutectic Solvents and Screening over 1000 of their Combinations Using Machine Learning DOI
Tarek Lemaoui, Abir Boublia,

Soumaya Lemaoui

и другие.

ACS Sustainable Chemistry & Engineering, Год журнала: 2023, Номер 11(26), С. 9564 - 9580

Опубликована: Июнь 16, 2023

Deep eutectic solvents (DESs) are a new class of environmentally friendly that have attracted the attention many researchers. Since DESs several practical applications in CO2 capture, knowledge their solubility is crucial. In this study, was predicted via multilayer perceptron (MLP) using molecular descriptors derived from Conductor-like Screening Model for Real Solvents (COSMO-RS). An extensive database 2327 data points created 94 unique DES mixtures made 2 anions, 17 cations, and 39 hydrogen bond donors (HBDs) at 150 different compositions operating conditions temperatures pressures. Several statistical tests were performed, after thorough hyperparameter tuning, it found best MLP architecture with an R2 value 0.986 ± 0.002 average absolute relative deviation (AARD) 4.504 0.507. The has also been loaded into accessible Excel spreadsheet included Supporting Information. Thereafter, order to guide design achieving high solubilities, utilized high-throughput screening 1320 combinations. This model encourages creation robust accurate models predict novel DESs, which will minimize need conducting costly time-consuming experiments.

Язык: Английский

Процитировано

48

Revolutionizing inverse design of ionic liquids through the multi-property prediction of over 300,000 novel variants using ensemble deep learning DOI Creative Commons
Tarek Lemaoui,

Tarek Eid,

Ahmad S. Darwish

и другие.

Materials Science and Engineering R Reports, Год журнала: 2024, Номер 159, С. 100798 - 100798

Опубликована: Май 7, 2024

In the flourishing field of materials science and engineering, ionic liquids (ILs) stand out for their advantageous features, unique tunable properties, environmentally friendly attributes, making them ideal candidates various applications. However, enormous diversity ILs presents a challenge that has traditionally been addressed through extensive experimental work. this study, computational approach combines robust molecular modeling advanced ensemble deep learning is employed. This proof-of-concept allows simultaneous prediction multiple properties ILs, thereby enabling simplified pathway to eco-efficient inverse solvent design. Based on an dataset from ILThermo with 73,847 data points 2917 1213 references using insightful features derived COSMO-RS, 8 machine algorithms were used predict physical ILs. Artificial Neural Networks (ANNs) have proven be optimal choice based results obtained. The ANN model was carefully tuned, resulting in total 11,241 parameters exhibited remarkable predictive ability R2 values 0.993, 0.907, 0.931, 0.875 density, viscosity, surface tension, melting temperature, respectively. A feature study screening 303,880 obtained by combining all possible pairs set 1070 cations 284 anions (1070×284). demonstrates pragmatic identifying different property profiles significantly narrow spectrum validation. screening, open-source "Inverse Designer Tool" developed as database filter explore user-defined criteria, facilitating identification promising IL specific presented here open door new exploration application catalyze integration industrial fields potential solvents.

Язык: Английский

Процитировано

19

Molecular-based artificial neural network for predicting the electrical conductivity of deep eutectic solvents DOI
Abir Boublia, Tarek Lemaoui, Farah Abu Hatab

и другие.

Journal of Molecular Liquids, Год журнала: 2022, Номер 366, С. 120225 - 120225

Опубликована: Авг. 29, 2022

Язык: Английский

Процитировано

64

Surface adsorption of Crizotinib on carbon and boron nitride nanotubes as Anti-Cancer drug Carriers: COSMO-RS and DFT molecular insights DOI

Walid Bououden,

Yacine Benguerba, Ahmad S. Darwish

и другие.

Journal of Molecular Liquids, Год журнала: 2021, Номер 338, С. 116666 - 116666

Опубликована: Июнь 5, 2021

Язык: Английский

Процитировано

60