Thermophysical characterization of Sustainable Pathways for hydrofluorocarbons separation utilizing Deep Eutectic solvents DOI Creative Commons
Luan Vittor Tavares Duarte de Alencar, Bastian González-Barramuño, S.B. Rodriguez-Reartes

и другие.

Journal of Industrial and Engineering Chemistry, Год журнала: 2024, Номер unknown

Опубликована: Дек. 1, 2024

Язык: Английский

Density, viscosity and CO2 solubility modeling of deep eutectic solvents from various neural network approaches DOI
S.M. Hosseini, Mariano Pierantozzi

Journal of the Taiwan Institute of Chemical Engineers, Год журнала: 2025, Номер 169, С. 105988 - 105988

Опубликована: Янв. 28, 2025

Язык: Английский

Процитировано

3

Viscosity of Deep Eutectic Solvents: Predictive Modelling with Experimental Validation DOI
Dmitriy M. Makarov, A. M. Kolker

Fluid Phase Equilibria, Год журнала: 2024, Номер 587, С. 114217 - 114217

Опубликована: Сен. 1, 2024

Язык: Английский

Процитировано

8

Eutectogels: The Multifaceted Soft Ionic Materials of Tomorrow DOI Creative Commons
Pablo A. Mercadal, Agustín González, Ana Beloqui

и другие.

JACS Au, Год журнала: 2024, Номер 4(10), С. 3744 - 3758

Опубликована: Окт. 3, 2024

Eutectogels, a rising category of soft materials, have recently garnered significant attention owing to their remarkable potential in various domains. This innovative class materials consists eutectic solvent immobilized three-dimensional network structure. The use eco-friendly and cost-effective solvents further emphasizes the appeal these multiple applications. Eutectogels exhibit key characteristics most solvents, including environmental friendliness, facile preparation, low vapor pressure, good ionic conductivity. Moreover, they can be tailored display functionalities such as self-healing capability, adhesiveness, antibacterial properties, which are facilitated by incorporating specific combinations mixture constituents. perspective article delves into current landscape challenges associated with eutectogels, particularly focusing on applications CO

Язык: Английский

Процитировано

7

Machine Learning for Predicting and Optimizing Physicochemical Properties of Deep Eutectic Solvents: Review and Perspectives DOI
Francisco Javier López-Flores, César Ramírez‐Márquez, J. Betzabe González‐Campos

и другие.

Industrial & Engineering Chemistry Research, Год журнала: 2024, Номер unknown

Опубликована: Дек. 19, 2024

This review explores the application of machine learning in predicting and optimizing key physicochemical properties deep eutectic solvents, including CO2 solubility, density, electrical conductivity, heat capacity, melting temperature, surface tension, viscosity. By leveraging learning, researchers aim to enhance understanding customization a critical step expanding their use across various industrial research domains. The integration represents significant advancement tailoring solvents for specific applications, marking progress toward development greener more efficient processes. As continues unlock full potential it is expected play an increasingly pivotal role revolutionizing sustainable chemistry driving innovations environmental technology.

Язык: Английский

Процитировано

4

Development of a Generalizable Gradient Boosting Regression-Based Framework for Predicting the Properties of Single and Binary IL Systems DOI

Kimia Fereydoon,

Oscar Nordness

ACS Applied Engineering Materials, Год журнала: 2025, Номер unknown

Опубликована: Март 21, 2025

Язык: Английский

Процитировано

0

Physics-Informed Multifidelity Gaussian Process: Modeling the Effect of Water and Temperature on the Viscosity of a Deep Eutectic Solvent DOI
Maximilian Fleck, Samir Darouich, Jürgen Pleiss

и другие.

Journal of Chemical Information and Modeling, Год журнала: 2025, Номер unknown

Опубликована: Апрель 16, 2025

Knowledge of shear viscosity as function temperature and composition an aqueous deep eutectic solvent mixture is essential for process design but can be highly challenging costly to measure. The present work proposes combine a small set experimentally determined viscosities with simulated values within linear multifidelity approach predict the dependency on composition. This method provides simple that requires physics-based transformation data prior training, without need additional such densities. allows reduction in cost experiments reduces number simulations required characterize specific system. data-driven component model does not concern itself rather excess free energy term framework according Eyring's absolute rate theory. Moreover, we illustrate application kernel-based machine learning approaches daily research questions where availability limited compared size typically neural networks.

Язык: Английский

Процитировано

0

Potential of deep eutectic solvents as green and sustainable solvents for the recovery of carboxylic acids from aqueous solution: a review DOI

S. V. Suresh Babu,

Sushil Kumar

Journal of Chemical Technology & Biotechnology, Год журнала: 2025, Номер unknown

Опубликована: Апрель 28, 2025

Abstract This paper presents an in‐depth exploration of the potential deep eutectic solvents (DESs) as green and sustainable in reactive extraction process for recovery carboxylic acids from fermentation broth/aqueous waste stream. It delves into eco‐friendly nature cost‐effectiveness DESs, highlighting their high solvation capabilities aligning with practices. The various hydrophobic DESs/NADESs, examining suitability replacements conventional along preparation, are explored. study emphasizes appropriate selection hydrogen bond donors (HBDs) acceptors (HBAs) DES formulations to enhance efficiency. role physical properties DESs such viscosity, density, surface tension ionic conductivity, which impact mass transfer efficiency discussed. In this review, effect parameters type DES/carboxylic acid, initial acid concentration, pH, aqueous phase ratio, temperature, stirring speed on possible mechanism extracted out. With recent studies using efficient excellent reusability multiple cycles is also concludes recommendations future prospects, emphasizing need optimize compositions intensified technologies scale up practical recovery. © 2025 Society Chemical Industry (SCI).

Язык: Английский

Процитировано

0

Biomass-Derived Solvents and Low-GWP Refrigerants as Working Fluids for Sustainable Absorption Refrigeration DOI
Miguel Viar, Fernando Pardo, Gabriel Zarca

и другие.

ACS Sustainable Chemistry & Engineering, Год журнала: 2025, Номер unknown

Опубликована: Май 19, 2025

Язык: Английский

Процитировано

0

A Comparative Evaluation of Friction Theory, Free-Volume Theory, Entropy Scaling, and Helmholtz Energy Scaling Viscosity Models Coupled with the PρT-SAFT Equation of State for Pure and Binary Mixtures of Ethylene Glycols and Alkanolamines DOI Creative Commons
Arash Pakravesh, Amir H. Mohammadi, Dominique Richon

и другие.

International Journal of Thermophysics, Год журнала: 2025, Номер 46(7)

Опубликована: Май 21, 2025

Язык: Английский

Процитировано

0

Solvation Dynamics and Microheterogeneity in Deep Eutectic Solvents DOI
Srijan Chatterjee, Tubai Chowdhury, Sayan Bagchi

и другие.

The Journal of Physical Chemistry B, Год журнала: 2024, Номер unknown

Опубликована: Дек. 13, 2024

Deep eutectic solvents have attracted considerable attention due to their unique properties and potential replace conventional in diverse applications, such as catalysis, energy storage, green chemistry. However, despite broad use, the microscopic mechanisms governing solvation dynamics role of hydrogen bonding deep remain insufficiently understood. In this article, we present our contributions toward unravelling micro heterogeneity within by combining vibrational Stark spectroscopy two-dimensional infrared with molecular simulations. Our findings demonstrate how composition, constituents, addition water significantly influence heterogeneous network solvent these systems. These insights provide valuable guidance for design next-generation tailored specific applications. By integrating experimental computational approaches, work sheds light on intricate relationship between nanostructure solvents, ultimately paving way innovative advances design.

Язык: Английский

Процитировано

2