Journal of Molecular Modeling, Год журнала: 2024, Номер 30(12)
Опубликована: Ноя. 18, 2024
Язык: Английский
Journal of Molecular Modeling, Год журнала: 2024, Номер 30(12)
Опубликована: Ноя. 18, 2024
Язык: Английский
Journal of Energy Chemistry, Год журнала: 2025, Номер unknown
Опубликована: Март 1, 2025
Язык: Английский
Процитировано
1Chemical Engineering Science, Год журнала: 2024, Номер 298, С. 120395 - 120395
Опубликована: Июнь 17, 2024
Язык: Английский
Процитировано
4Challenges and advances in computational chemistry and physics, Год журнала: 2025, Номер unknown, С. 61 - 79
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
0Chemical Engineering Journal, Год журнала: 2024, Номер 503, С. 158578 - 158578
Опубликована: Дек. 12, 2024
Язык: Английский
Процитировано
3ACS Sustainable Chemistry & Engineering, Год журнала: 2024, Номер unknown
Опубликована: Ноя. 21, 2024
The development and application of functionalized ionic liquids (ILs) are currently hot topics in chemical engineering. However, research on ILs toxicity is significantly lagging behind studies their physical properties applications. This study begins with the construction model, utilizing three types descriptors to quantify structures developing four machine learning (ML) models for predicting Daphnia magna. Guttmann coefficients used evaluate diversity structures. Feature engineering employed optimize inputs quantitative structure–activity relationship (QSAR) models, enhancing ability capture between toxicity. Grid search cross-validation ensure model robustness prevent overfitting. Results indicate that random forest based RDKit performs best (R2 = 0.975, RMSE 0.222). SHAP analysis identifies key molecular features contributing toxicity, revealing substructures around carbon atoms crucial while containing oxygen can reduce These findings offer insights designing low-toxicity, environmentally friendly highlight value green chemistry sustainability research.
Язык: Английский
Процитировано
2Journal of Molecular Liquids, Год журнала: 2024, Номер unknown, С. 126191 - 126191
Опубликована: Окт. 1, 2024
Язык: Английский
Процитировано
1AIChE Journal, Год журнала: 2024, Номер 71(2)
Опубликована: Окт. 18, 2024
Abstract Although eutectic solvents (ESs) have garnered significant attention as promising for carbon dioxide (CO 2 ) capture, systematic studies on discovering novel ESs linking machine learning (ML) and experimental validation are scarce. For the reliable prediction of CO ‐in‐ES solubility, ensemble ML modeling based random forest extreme gradient boosting with inputs COSMO‐RS derived molecular descriptors is rigorously performed, which an extensive solubility database 2438 data points in 162 involving 106 ES systems collected. With best‐performing model obtained, solubilities 4735 combinations components first predicted estimating their potential capture. The top‐ranked candidate subsequently evaluated by examining environmental health safety properties individual assessing operating window solid–liquid equilibrium (SLE) prediction. Three most finally retained, thoroughly studied SLE absorption experiments.
Язык: Английский
Процитировано
1Chemical Engineering Journal, Год журнала: 2024, Номер unknown, С. 159039 - 159039
Опубликована: Дек. 1, 2024
Язык: Английский
Процитировано
1Research Square (Research Square), Год журнала: 2024, Номер unknown
Опубликована: Ноя. 6, 2024
Язык: Английский
Процитировано
0Journal of Molecular Modeling, Год журнала: 2024, Номер 30(12)
Опубликована: Ноя. 18, 2024
Язык: Английский
Процитировано
0