A review on the impact of choline chloride-based DES on sugarcane bagasse DOI

Raushan Quraishi,

Asma Musfira Shabbirahmed,

J. Joel

и другие.

Chemical Engineering Communications, Год журнала: 2024, Номер unknown, С. 1 - 31

Опубликована: Дек. 30, 2024

Research focus has turned to sustainable and ecologically friendly energy sources due the growing dependence on nonrenewable fuels. The lignocellulosic biomass's (LCB) intrinsic recalcitrance makes bioprocess's downstream processing difficult. Over past 20 years, pretreatment procedures have drawn a lot of attention since they are acknowledged as essential operations for effective biomass refining. In order achieve more practices, deep eutectic solvents (DESs) proven be useful LCB valorization. DESs thermochemically stable, recyclable, non-flammable, contain very little vapor pressure. present article, an extensive summarization types, characteristics, functions in efficient conversion sugarcane bagasse is reviewed. addition outlining principles DES composition, overview provided factors influencing ChCl-DES-assisted extraction compositional components from bagasse. Furthermore, in-depth insight into mechanism behind ChCl-based-DES reactions will provide highlights future studies. most recent advancements years 2018–2023 DES-based valorization various products then thoroughly covered. Finally, paper concluded with discussion technical issues potential directions research works.

Язык: Английский

Valorization of rapeseed straw through the enhancement of cellulose accessibility, lignin removal and xylan elimination using an n-alkyltrimethylammonium bromide-based deep eutectic solvent DOI

Zhengyu Tang,

Chaowei Zhang,

Junyao Yin

и другие.

International Journal of Biological Macromolecules, Год журнала: 2025, Номер unknown, С. 140151 - 140151

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

3

Environmentally friendly bio-based additives in oil-based drilling fluids: Efficient synthesis, well-ordered self-assembly, exceptional ultra-high-temperature resistance, and excellent anti-settling properties DOI

Liuxin Yan,

Qi Li, Xuying Guo

и другие.

Colloids and Surfaces A Physicochemical and Engineering Aspects, Год журнала: 2025, Номер 719, С. 137014 - 137014

Опубликована: Апрель 22, 2025

Язык: Английский

Процитировано

1

Lignocellulose‐Derived Energy Materials and Chemicals: A Review on Synthesis Pathways and Machine Learning Applications DOI
Luyao Wang, Shuling Liu, Sehrish Mehdi

и другие.

Small Methods, Год журнала: 2025, Номер unknown

Опубликована: Апрель 23, 2025

Abstract Lignocellulose biomass, Earth's most abundant renewable resource, is crucial for sustainable production of high–value chemicals and bioengineered materials, especially energy storage. Efficient pretreatment vital to boost lignocellulose conversion bioenergy biomaterials, cut costs, broaden its energy–sector applications. Machine learning (ML) has become a key tool in this field, optimizing processes, improving decision‐making, driving innovation valorization This review explores main strategies – physical, chemical, physicochemical, biological, integrated methods evaluating their pros cons It also stresses ML's role refining these supported by case studies showing effectiveness. The examines challenges opportunities integrating ML into storage, underlining pretreatment's importance unlocking lignocellulose's full potential. By blending process knowledge with advanced computational techniques, work aims spur progress toward sustainable, circular bioeconomy, particularly storage solutions.

Язык: Английский

Процитировано

1

Computational Advances in Ionic Liquid Applications for Green Chemistry: A Critical Review of Lignin Processing and Machine Learning Approaches DOI Creative Commons
Brian Taylor, Nikhil Kumar, Dhirendra Kumar Mishra

и другие.

Molecules, Год журнала: 2024, Номер 29(21), С. 5073 - 5073

Опубликована: Окт. 26, 2024

The valorization and dissolution of lignin using ionic liquids (ILs) is critical for developing sustainable biorefineries a circular bioeconomy. This review aims to critically assess the current state computational machine learning methods understanding optimizing IL-based processes reported since 2022. paper examines various approaches, from quantum chemistry learning, highlighting their strengths, limitations, recent advances in predicting lignin-IL interactions. Key themes include challenges accurately modeling lignin’s complex structure, development efficient screening methodologies enhance processes, integration with calculations. These will drive progress by providing deeper molecular-level insights facilitating rapid novel IL-lignin systems.

Язык: Английский

Процитировано

4

Molecular simulation and machine learning assisted in exploring betaine-based deep eutectic solvent extraction of active compounds from peony petals DOI
Shenglin Wang,

Jiahui Wei,

Hanwen Ge

и другие.

Separation and Purification Technology, Год журнала: 2025, Номер 361, С. 131550 - 131550

Опубликована: Янв. 11, 2025

Язык: Английский

Процитировано

0

Applications of Predictive QSPR Modeling for Deep Eutectic Solvents DOI
Amit Kumar Halder, M. Natália D. S. Cordeiro

Challenges and advances in computational chemistry and physics, Год журнала: 2025, Номер unknown, С. 177 - 203

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

0

Determining whether biochar can effectively increase crop yields: A machine learning model development with imbalanced data DOI Creative Commons
Weidong Jiao, Kechao Li, Min Zhou

и другие.

Environmental Technology & Innovation, Год журнала: 2025, Номер unknown, С. 104154 - 104154

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

0

Promoting lignocellulosic biorefinery by machine learning: progress, perspectives and challenges DOI
Xiaoyan Huang, Xue Zhang, Lei Xing

и другие.

Bioresource Technology, Год журнала: 2025, Номер unknown, С. 132434 - 132434

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

0

Predictive modeling and interpretability analysis of bioconcentration factors for organic chemicals in fish using machine learning DOI
Xiucheng Dong,

Zhenpeng Xu,

Hongxia Zhao

и другие.

Environmental Pollution, Год журнала: 2025, Номер unknown, С. 126323 - 126323

Опубликована: Май 1, 2025

Язык: Английский

Процитировано

0

Comprehensive models to estimate the Isobaric heat capacity of deep eutectic solvents based on Machine learning algorithms DOI
M.A. Moradkhani, Seyyed Hossein Hosseini

Journal of Molecular Liquids, Год журнала: 2024, Номер 416, С. 126475 - 126475

Опубликована: Ноя. 10, 2024

Язык: Английский

Процитировано

2