
NeuroImage, Год журнала: 2017, Номер 170, С. 332 - 347
Опубликована: Фев. 20, 2017
Язык: Английский
NeuroImage, Год журнала: 2017, Номер 170, С. 332 - 347
Опубликована: Фев. 20, 2017
Язык: Английский
Nature reviews. Neuroscience, Год журнала: 2017, Номер 19(1), С. 17 - 33
Опубликована: Дек. 14, 2017
Язык: Английский
Процитировано
831Neuron, Год журнала: 2016, Номер 92(2), С. 544 - 554
Опубликована: Окт. 1, 2016
Язык: Английский
Процитировано
820Journal of Neuroscience, Год журнала: 2016, Номер 36(48), С. 12083 - 12094
Опубликована: Ноя. 30, 2016
A critical feature of the human brain that gives rise to complex cognition is its ability reconfigure network structure dynamically and adaptively in response environment. Existing research probing task-related reconfiguration has concluded that, although there are many similarities during an intrinsic, resting state performance a variety cognitive tasks, meaningful differences as well. In this study, we related organization reconfigured two tasks: sequence tapping task, which thought probe motor execution likely engages single network, n-back working memory requires coordination across multiple networks. We implemented graph theoretical analyses using functional connectivity data from fMRI scans calculate whole-brain measures healthy young adults. focused on quantifying segregation (modularity, system segregation, local efficiency, number provincial hub nodes) integration (global connector nodes). Using these measures, found converging evidence local, within-network communication for execution, whereas integrative, between-network memory. These results confirm remarkable large-scale current demands interpreting terms may shed light optimal structures underlying successful cognition. SIGNIFICANCE STATEMENT The dynamic nature wide range behaviors humans capable. collected adults measured patterns between regions distributed entire brain. quantify tasks hypothesized require different combinations During distinct networks increased. Conversely, memory, changes were better behavioral performance. underscore brain's selectively when confronted with changing achieve balance integration.
Язык: Английский
Процитировано
719Proceedings of the National Academy of Sciences, Год журнала: 2016, Номер 113(30)
Опубликована: Июль 11, 2016
Significance Since the early days of neuroscience, relative merit structural vs. functional network accounts in explaining neurological deficits has been intensely debated. Using a large stroke cohort and machine-learning approach, we show that visual memory verbal are better predicted by connectivity than lesion location, motor location connectivity. In addition, disruption to subset cortical areas predicts general cognitive deficit (spanning multiple behavior domains). These results shed light on complementary value stroke, provide physiological mechanism for multidomain seen after stroke.
Язык: Английский
Процитировано
582Proceedings of the National Academy of Sciences, Год журнала: 2015, Номер 112(49)
Опубликована: Ноя. 23, 2015
Significance Many complex networks are composed of “modules” that form an interconnected network. We sought to elucidate the nature brain’s modular function by testing autonomy modules and potential mechanisms underlying their interactions. By studying brain as a large-scale network measuring activity across during 77 cognitive tasks, we demonstrate that, despite connectivity between modules, each module appears execute discrete relatively autonomously from other modules. Moreover, regions with diverse appear play role in enabling interact while remaining mostly autonomous. This generates counterintuitive idea necessary for biological networks.
Язык: Английский
Процитировано
572Trends in Cognitive Sciences, Год журнала: 2015, Номер 19(12), С. 757 - 770
Опубликована: Ноя. 13, 2015
Язык: Английский
Процитировано
484Scientific Reports, Год журнала: 2017, Номер 7(1)
Опубликована: Июнь 2, 2017
In the human brain, spontaneous activity during resting state consists of rapid transitions between functional network states over time but underlying mechanisms are not understood. We use connectome based computational brain modeling to reveal fundamental principles how generates large-scale observable by noninvasive neuroimaging. used structural and neuroimaging data construct whole- models. With this novel approach, we that operates at maximum metastability, i.e. in a switching. addition, investigate cortical heterogeneity across areas. Optimization spectral characteristics each local region revealed dynamical core which is driving rest whole brain. Brain modelling goes beyond correlational analysis reveals non-trivial non-invasive observations. Our findings significantly pertain important role connectomics understanding function.
Язык: Английский
Процитировано
482Nature Neuroscience, Год журнала: 2018, Номер 21(9), С. 1148 - 1160
Опубликована: Авг. 10, 2018
Язык: Английский
Процитировано
471Science Advances, Год журнала: 2019, Номер 5(2)
Опубликована: Фев. 1, 2019
Dynamic patterns of brain activity at rest distinguish conscious and unconscious states in humans.
Язык: Английский
Процитировано
455Nature reviews. Neuroscience, Год журнала: 2019, Номер 20(7), С. 435 - 446
Опубликована: Май 24, 2019
Язык: Английский
Процитировано
400