Trends in Neurosciences,
Год журнала:
2024,
Номер
47(4), С. 303 - 318
Опубликована: Фев. 23, 2024
Stroke
is
a
leading
cause
of
adult
disability.
Understanding
stroke
damage
and
recovery
requires
deciphering
changes
in
complex
brain
networks
across
different
spatiotemporal
scales.
While
recent
developments
readout
technologies
progress
network
modeling
have
revolutionized
current
understanding
the
effects
on
at
macroscale,
reorganization
smaller
scale
remains
incompletely
understood.
In
this
review,
we
use
conceptual
framework
graph
theory
to
define
from
nano-
macroscales.
Highlighting
stroke-related
connectivity
studies
multiple
scales,
argue
that
multiscale
connectomics-based
approaches
may
provide
new
routes
better
evaluate
structural
functional
remapping
after
during
recovery.
Dialogues in Clinical Neuroscience,
Год журнала:
2018,
Номер
20(2), С. 111 - 121
Опубликована: Июнь 30, 2018
Network
neuroscience
is
a
thriving
and
rapidly
expanding
field.
Empirical
data
on
brain
networks,
from
molecular
to
behavioral
scales,
are
ever
increasing
in
size
complexity.
These
developments
lead
strong
demand
for
appropriate
tools
methods
that
model
analyze
network
data,
such
as
those
provided
by
graph
theory.
This
brief
review
surveys
some
of
the
most
commonly
used
neurobiologically
insightful
measures
techniques.
Among
these,
detection
communities
or
modules,
identification
central
elements
facilitate
communication
signal
transfer,
particularly
salient.
A
number
emerging
trends
growing
use
generative
models,
dynamic
(time-varying)
multilayer
well
application
algebraic
topology.
Overall,
theory
centrally
important
understanding
architecture,
development,
evolution
networks.La
neurociencia
de
la
red
es
un
campo
próspero
y
rápida
expansión.
Los
datos
empíricos
sobre
las
redes
cerebrales,
desde
niveles
moleculares
hasta
conductuales,
son
cada
vez
más
grandes
en
tamaño
complejidad.
Estos
desarrollos
llevan
una
fuerte
demanda
herramientas
métodos
apropiados
que
modelen
analicen
los
cerebral,
como
proporcionados
por
teoría
grafos.
Esta
breve
revisión
examina
algunas
medidas
técnicas
gráficas
comúnmente
empleadas
neurobiológicamente
discriminadoras.
Entre
estas,
particularmente
importantes
detección
módulos
o
comunidades
redes,
identificación
elementos
centrales
facilitan
comunicación
transferencia
señales.
Algunas
tendencias
emergentes
el
empleo
creciente
modelos
generativos,
dinámicas
(de
tiempo
variable)
multicapa,
así
aplicación
topología
algebraica.
En
general,
grafos
especialmente
para
comprender
arquitectura,
desarrollo
evolución
cerebrales.La
des
réseaux
est
domaine
florissant
qui
s'étend
rapidement.
Les
données
empiriques
sur
les
cérébraux,
l'échelle
moléculaire
à
comportementale,
ne
cessent
d'augmenter
volume
et
complexité.
Ces
développements
génèrent
une
demande
forte
d'outils
méthodes
appropriés
pour
modéliser
analyser
comme
celles
fournies
par
théorie
graphes.
Dans
cette
rapide
analyse,
nous
examinons
certaines
techniques
mesures
graphes
plus
couramment
utilisées
signifiantes
neurobiologiquement.
Parmi
elles,
détection
modules
ou
communautés
l'identification
éléments
réseau
facilite
le
transfert
du
signal,
sont
particulièrement
marquantes.
tendances
émergentes,
note
l'utilisation
croissante
modèles
génératifs,
dynamiques
(variables
avec
temps)
multi-couches,
ainsi
l'application
topologie
algébrique.
Globalement,
essentielles
comprendre
l'architecture,
développement
l'évolution
cérébraux.
Proceedings of the National Academy of Sciences,
Год журнала:
2018,
Номер
115(21)
Опубликована: Май 8, 2018
Brain
areas'
functional
repertoires
are
shaped
by
their
incoming
and
outgoing
structural
connections.
In
empirically
measured
networks,
most
connections
short,
reflecting
spatial
energetic
constraints.
Nonetheless,
a
small
number
of
span
long
distances,
consistent
with
the
notion
that
functionality
these
must
outweigh
cost.
While
precise
function
long-distance
is
not
known,
leading
hypothesis
they
act
to
reduce
topological
distance
between
brain
areas
facilitate
efficient
interareal
communication.
However,
this
implies
non-specificity
we
contend
unlikely.
Instead,
propose
serve
diversify
inputs
outputs,
thereby
promoting
complex
dynamics.
Through
analysis
five
network
datasets,
show
play
only
minor
roles
in
reducing
average
distance.
contrast,
short-range
neighbors
exhibit
marked
differences
connectivity
profiles,
suggesting
enhance
dissimilarity
regional
outputs.
Next,
--
isolation
profiles
non-random
levels
similarity,
communication
pathways
formed
redundancies
may
promote
robustness.
Finally,
use
linearization
Wilson-Cowan
dynamics
simulate
covariance
structure
neural
activity
absence
connections,
common
measure
diversity
decreases.
Collectively,
our
findings
suggest
necessary
for
supporting
diverse
Network Neuroscience,
Год журнала:
2018,
Номер
3(2), С. 475 - 496
Опубликована: Дек. 10, 2018
Large-scale
structural
brain
networks
encode
white
matter
connectivity
patterns
among
distributed
areas.
These
connection
are
believed
to
support
cognitive
processes
and,
when
compromised,
can
lead
neurocognitive
deficits
and
maladaptive
behavior.
A
powerful
approach
for
studying
the
organizing
principles
of
is
construct
group-representative
from
multisubject
cohorts.
Doing
so
amplifies
signal
noise
ratios
provides
a
clearer
picture
network
organization.
Here,
we
show
that
current
approaches
generating
sparse
overestimate
proportion
short-range
connections
present
in
as
result,
fail
match
subject-level
along
wide
range
statistics.
We
an
alternative
preserves
connection-length
distribution
individual
subjects.
have
used
this
method
previous
papers
generate
networks,
though
date
its
performance
has
not
been
appropriately
benchmarked
compared
against
other
methods.
As
result
simple
modification,
generated
using
successfully
recapitulate
properties,
outperforming
similar
by
better
preserving
features
promote
integrative
function
rather
than
segregative.
The
developed
here
holds
promise
future
studies
investigating
basic
organizational
large-scale
networks.
Nature Communications,
Год журнала:
2020,
Номер
11(1)
Опубликована: Июнь 15, 2020
Working
memory
(WM)
allows
information
to
be
stored
and
manipulated
over
short
time
scales.
Performance
on
WM
tasks
is
thought
supported
by
the
frontoparietal
system
(FPS),
default
mode
(DMS),
interactions
between
them.
Yet
little
known
about
how
these
systems
their
relate
individual
differences
in
performance.
We
address
this
gap
knowledge
using
functional
MRI
data
acquired
during
performance
of
a
2-back
task,
as
well
diffusion
tensor
imaging
collected
same
individuals.
show
that
strength
FPS
DMS
task
engagement
inversely
correlated
with
performance,
modulated
activation
regions
but
not
regions.
Next,
we
use
clustering
algorithm
identify
two
distinct
subnetworks
FPS,
find
display
distinguishable
patterns
gene
expression.
Activity
one
subnetwork
positively
associated
FPS-DMS
interactions,
while
activity
second
negatively
associated.
Further,
pattern
structural
linkages
explains
differential
capacity
influence
interactions.
To
determine
whether
observations
could
provide
mechanistic
account
large-scale
neural
underpinnings
WM,
build
computational
model
composed
coupled
oscillators.
Modulating
amplitude
causes
expected
change
thereby
offering
support
for
mechanism
which
tunes
Broadly,
our
study
presents
holistic
regional
activity,
together
humans.
Neuron,
Год журнала:
2023,
Номер
111(22), С. 3570 - 3589.e5
Опубликована: Ноя. 1, 2023
Efforts
are
ongoing
to
map
synaptic
wiring
diagrams,
or
connectomes,
understand
the
neural
basis
of
brain
function.
However,
chemical
synapses
represent
only
one
type
functionally
important
neuronal
connection;
in
particular,
extrasynaptic,
"wireless"
signaling
by
neuropeptides
is
widespread
and
plays
essential
roles
all
nervous
systems.
By
integrating
single-cell
anatomical
gene-expression
datasets
with
biochemical
analysis
receptor-ligand
interactions,
we
have
generated
a
draft
connectome
neuropeptide
C.
elegans
system.
This
network
characterized
high
connection
density,
extended
cascades,
autocrine
foci,
decentralized
topology,
large,
highly
interconnected
core
containing
three
constituent
communities
sharing
similar
patterns
input
connectivity.
Intriguingly,
several
key
hubs
little-studied
neurons
that
appear
specialized
for
peptidergic
neuromodulation.
We
anticipate
neuropeptidergic
will
serve
as
prototype
how
networks
neuromodulatory
organized.