The emergence of multiscale connectomics-based approaches in stroke recovery DOI Creative Commons
Shahrzad Latifi, S. Thomas Carmichael

Trends in Neurosciences, Год журнала: 2024, Номер 47(4), С. 303 - 318

Опубликована: Фев. 23, 2024

Stroke is a leading cause of adult disability. Understanding stroke damage and recovery requires deciphering changes in complex brain networks across different spatiotemporal scales. While recent developments readout technologies progress network modeling have revolutionized current understanding the effects on at macroscale, reorganization smaller scale remains incompletely understood. In this review, we use conceptual framework graph theory to define from nano- macroscales. Highlighting stroke-related connectivity studies multiple scales, argue that multiscale connectomics-based approaches may provide new routes better evaluate structural functional remapping after during recovery.

Язык: Английский

Linking Structure and Function in Macroscale Brain Networks DOI Creative Commons
Laura E. Suárez, Ross D. Markello, Richard F. Betzel

и другие.

Trends in Cognitive Sciences, Год журнала: 2020, Номер 24(4), С. 302 - 315

Опубликована: Фев. 25, 2020

The emergence of network neuroscience allows researchers to quantify the link between organizational features neuronal networks and spectrum cortical functions.Current models indicate that structure function are significantly correlated, but correspondence is not perfect because reflects complex multisynaptic interactions in structural networks.Function cannot be directly estimated from structure, must inferred by higher-order interactions. Statistical, communication, biophysical have been used translate brain function.Structure–function coupling regionally heterogeneous follows molecular, cytoarchitectonic, functional hierarchies. Structure–function relationships a fundamental principle many naturally occurring systems. However, research suggests there an imperfect connectivity brain. Here, we synthesize current state knowledge linking macroscale discuss different types assess this relationship. We argue do include requisite biological detail completely predict function. Structural reconstructions enriched with local molecular cellular metadata, concert more nuanced representations functions properties, hold great potential for truly multiscale understanding structure–function relationship central concept natural sciences engineering. Consider how conformation protein determines its chemical properties and, ultimately, folding into 3D promotes among amino acids, allowing chemically interact other molecules endowing it Conversely, disruption protein's results loss Tellingly, said denatured, highlighting idea changing has fundamentally altered nervous system analogously shaped arrangement neurons populations. synaptic projections forms hierarchy (see Glossary) nested increasingly polyfunctional neural circuits support perception, cognition, action. Modern imaging technology permits high-throughput reconstruction across spatiotemporal scales species (Box 1). Through extensive international data sharing efforts, detailed system's connection patterns available humans multiple model organisms, including invertebrate [1.Chiang A-S. et al.Three-dimensional brain-wide wiring Drosophila at single-cell resolution.Curr. Biol. 2011; 21: 1-11Abstract Full Text PDF PubMed Scopus (324) Google Scholar], avian [2.Shanahan M. al.Large-scale organization forebrain: matrix theoretical analysis.Front. Comput. Neurosci. 2013; 7: 89Crossref (111) rodent [3.Oh S.W. al.A mesoscale connectome mouse brain.Nature. 2014; 508: 207Crossref (777) Scholar,4.Bota al.Architecture cerebral association underlying cognition.Proc. Natl. Acad. Sci. U.S.A. 2015; 112: E2093-E2101Crossref (90) Scholar, primate [5.Markov N.T. weighted directed interareal macaque cortex.Cereb. Cortex. 2012; 24: 17-36Crossref (272) Scholar,6.Majka P. al.Towards comprehensive atlas connections brain: Mapping tracer injection studies common marmoset reference digital template.J. Com. Neurol. 2016; 524: 2161-2181Crossref (33) Scholar. These diagrams system, termed (SC) or connectomes, represent physical elements [7.Sporns O. al.The human connectome: description brain.PLoS 2005; 1: e42Crossref (1521) Scholar]. offers opportunity articulate functions. SC possess distinctive nonrandom attributes, high clustering short path length, characteristic small-world architecture [8.Watts D.J. Strogatz S.H. Collective dynamics networks.Nature. 1998; 393: 440Crossref (0) Populations similar tend cluster together, forming specialized modules crosslinked hub nodes diverse connectional fingerprints [9.Young M.P. systems cortex.J. Roy. Soc. Lond. B. 1993; 252: 13-18Crossref Scholar,10.Kötter R. al.Connectional characteristics areas Walker's map prefrontal cortex.Neurocomputing. 2001; 38: 741-746Crossref (20) hubs disproportionately interconnected each other, putative core [11.Hagmann al.Mapping cortex.PLoS 2008; 6: e159Crossref (2384) Scholar] 'rich club' [12.van den Heuvel al.High-cost, high-capacity backbone global communication.Proc. 109: 11372-11377Crossref (361) architectural feature potentially signals sampled integrated [13.Zamora-López G. al.Cortical form module multisensory integration on top networks.Front. Neuroinform. 2010; 4: 1PubMed Finally, spatially embedded, finite metabolic material resources [14.Bullmore E. Sporns economy organization.Nat. Rev. 13: 336Crossref (1282) resulting increased prevalence shorter, low-cost [15.Horvát S. al.Spatial embedding cost constrain layout rodents primates.PLoS 14: e1002512Crossref Scholar,16.Roberts J.A. contribution geometry connectome.NeuroImage. 124: 379-393Crossref (60) attributes replicated range tracing techniques, suggesting principles phylogeny [17.Van al.Comparative connectomics.Trends. Cogn. 20: 345-361Abstract (118) imparts distinct signature coactivation patterns. Inter-regional promote signaling synchrony distant populations, giving rise coherent dynamics, measured as regional time series electromagnetic hemodynamic activity. Systematic pairs regions can (FC) networks. Over past decade, these recorded without task instruction stimulation; 'intrinsic' ' resting-state' FC thought reflect spontaneous activity [18.Biswal al.Functional motor cortex resting using echo-planar MRI.Magn. Reson. Med. 1995; 34: 537-541Crossref (5503) Intrinsic highly organized [19.Damoiseaux J. al.Consistent resting-state healthy subjects.Proc. 2006; 103: 13848-13853Crossref (2665) 20.Bellec al.Multi-level bootstrap analysis stable clusters fMRI.NeuroImage. 51: 1126-1139Crossref (170) 21.Thomas Yeo intrinsic connectivity.J. Neurophysiol. 106: 1125-1165Crossref (2040) reproducible [22.Gordon E.M. al.Precision mapping individual brains.Neuron. 2017; 95: 791-807Abstract (140) Scholar,23.Noble decade test-retest reliability connectivity: systematic review meta-analysis.NeuroImage. 2019; : 116157Crossref (5) comparable task-driven [24.Smith S.M. al.Correspondence brain's during activation rest.Proc. 2009; 13040-13045Crossref (2684) Scholar,25.Cole M.W. al.Intrinsic task-evoked architectures brain.Neuron. 83: 238-251Abstract (516) persistent nature rest makes ideal starting point study [26.Honey C.J. al.Can brain?.NeuroImage. 52: 766-776Crossref (291) Scholar,27.Damoiseaux J.S. Greicius M.D. Greater than sum parts: combining connectivity.Brain Struct. Funct. 213: 525-533Crossref Here first show direct one-to-one links limited inherently obscured networked survey modern quantitative methods move away correlations conceptualizing emerging focus strengths, limitations, commonalities. posit next steps network-level take account heterogeneity enriching microscale transcriptomic, neuromodulatory information. close theories uniform brain, vary parallel cytoarchitectonic representational Early emphasized weights. weights correlated [28.Honey C. al.Predicting connectivity.Proc. 2035-2040Crossref (1543) also Furthermore, structurally connected display greater unconnected Scholar,29.Shen K. al.Information processing functionally defined 32: 17465-17476Crossref (63) Scholar (Figure 1A). More globally, networks, particularly visual somatomotor circumscribed dense anatomical [29.Shen 30.Van Den al.Functionally linked brain.Hum. Brain Mapp. 30: 3127-3141Crossref (625) 31.Alves P.N. al.An improved neuroanatomical default-mode reconciles previous neuroimaging neuropathological findings.Commun. 2: 1-14Crossref While perfect. Even best-case estimates place correlation R2 ≈ 0.5 which means considerable variance (at least half) unexplained simple 1:1 structure. discrepancy widens case 1B ). A salient example homotopic corresponding structures two hemispheres. typically strongest subset [32.Mišić landscape One. 9: e111007Crossref (14) all supported callosal projection [33.Shen al.Stable long-range interhemispheric coordination projections.Proc. 6473-6478Crossref (52) strong may observed even individuals no [34.Uddin L.Q. al.Residual split-brain revealed fMRI.Neuroreport. 19: 703Crossref (96) 35.O'Reilly J.X. al.Causal effect disconnection lesions rhesus monkeys.Proc. 110: 13982-13987Crossref (106) 36.Layden E.A. al.Interhemispheric zebra finch absent corpus callosum normal ontogeny.NeuroImage. Crossref (1) examples illustrate sustained communication via indirect manifest FC. discordance pronounced mesoscopic scale. commonly meta-analytic recovered [37.Mišić al.Cooperative competitive spreading connectome.Neuron. 86: 1518-1529Abstract Scholar,38.Betzel R.F. al.Diversity meso-scale non-human connectomes.Nat. Commun. 2018; 346Crossref (21) 1C). reproducibly independent component community detection [39.Power J.D. 72: 665-678Abstract (1499) data-driven [20.Bellec Scholar,21.Thomas both recordings application diffusion-weighted covariance yields contiguous Scholar,40.Betzel modular networks: accounting wiring.Net. 42-68Crossref For example, fail identify default mode-like network, perhaps parts anatomically inter-connected differences. evidence assortative mixing, whereby (e.g., degrees) likely connected, whereas same true [50.Lim al.Discordant two-layer multiplex network.Sci. Rep. 2885Crossref (2) At scale, communities assortative, while disassortative [38.Betzel In words, affinity dissimilar attributes. As result, tuning algorithms sensitive improves match Altogether, rich body work demonstrates spans scales, edges their arrangement. Why FC? Functional arise connections, courses synapses removed other. propensity correlate driven only them, inputs they receive sensory organs entire [27.Damoiseaux Scholar,51.Bettinardi R.G. al.How sculpts function: unveiling structure.Chaos. 27: 047409Crossref (12) corollary much less distance-dependent connections. Anatomical subject material, spatial, constraints Scholar]; pressures reduced probability weight increasing spatial separation Although distance-dependence FC, weaker, ensuring differences configurations. section consider emergent property links. seen so far, exists nontrivial perfectly aligned. number emerged embody link, statistical [41.Mišić al.Network-level structure-function neocortex.Cereb. 26: 3285-3296Crossref (153) Scholar,42.Messé A. al.Relating relative contributions anatomy, stationary non-stationarities.PLoS. 10: e1003530Crossref Scholar,43.Graham D. Rockmore packet switching brain.J. 23: 267-276Crossref (18) 44.Goñi al.Resting-brain predicted analytic measures 111: 833-838Crossref (208) 45.Crofts J.J. Higham communicability measure applied networks.J. Interf. 411-414Crossref (61) [46.Honey al.Network shapes scales.Proc. 2007; 104: 10240-10245Crossref (941) 47.Breakspear Dynamic large-scale activity.Nat. 340Crossref (147) 48.Sanz-Leon al.Mathematical framework modeling Virtual Brain.NeuroImage. 385-430Crossref 49.Deco al.Key role coupling, delay, noise fluctuations.Proc. 10302-10307Crossref (372) Though implementation assumptions, emphasize collective, transcends geometric dependence dyadic relationships. briefly strategies, interpretation predictive utility, most importantly, what teach us about Perhaps simplest way statistically. Varying rank regression useful, canonical [52.Deligianni F. al.NODDI tensor-based microstructural indices predictors connectivity.PLoS 11: e0153404Crossref (13) partial squares objective simultaneously combinations maximally [53.McIntosh A.R. Mišić Multivariate analyses data.Annu. Psychol. 64: 499-525Crossref (73) 2). An appealing such modes. particular configuration subnetwork give Taking further, artificial learn recent variant word2vec algorithm build low-dimensional representation train deep edge-wise [54.Rosenthal relations embedded vector 2178Crossref (3) offer associate assuming specific mode interaction Communication science telecommunication engineering conceptualize superposition elementary events [43.Graham Scholar,55.Avena-Koenigsberger al.Communication networks.Nat. 17Crossref (92) By explicitly formulating inter-regional signaling, open important questions, namely: biologically realistic model, well does fit network? focused centralized shortest routing, discrete travel set source node prespecified target node. recently, attention shifted decentralized mechanisms where diffuse through [56.Mišić convergence zone hippocampus.PLoS. e1003982Crossref Scholar,57.Atasoy al.Human connectome-specific harmonic waves.Nat. 10340Crossref often broadcast fronts Scholar,58.Abdelnour diffusion accurately networks.NeuroImage. 90: 335-347Crossref (71) Scholar,59.Worrell J.C. al.Optimized sensory-motor integration.Net. 415-430Crossref Others considered neither fully nor decentralized, ensembles [45.Crofts Scholar,60.Avena-Koenigsberger al.Path tradeoff efficiency resilience connectome.Brain 222: 603-618Crossref (17) multiplexed strategies involving [44.Goñi Scholar,61.Avena-Koenigsberger routing networks.PLoS 15: e1006833Crossref 62.Betzel al.Structural, genetic factors interregional probed electrocorticography.Nat. Biomed. Eng. 63.Vazquez-Rodriguez al.Gradients tethering neocortex.Proc. 116: 21219-21227Crossref (6) consensus that, given topological proximity possible utilize either al.Re

Язык: Английский

Процитировано

686

Graph theory methods: applications in brain networks DOI Creative Commons
Olaf Sporns

Dialogues in Clinical Neuroscience, Год журнала: 2018, Номер 20(2), С. 111 - 121

Опубликована: Июнь 30, 2018

Network neuroscience is a thriving and rapidly expanding field. Empirical data on brain networks, from molecular to behavioral scales, are ever increasing in size complexity. These developments lead strong demand for appropriate tools methods that model analyze network data, such as those provided by graph theory. This brief review surveys some of the most commonly used neurobiologically insightful measures techniques. Among these, detection communities or modules, identification central elements facilitate communication signal transfer, particularly salient. A number emerging trends growing use generative models, dynamic (time-varying) multilayer well application algebraic topology. Overall, theory centrally important understanding architecture, development, evolution networks.La neurociencia de la red es un campo próspero y rápida expansión. Los datos empíricos sobre las redes cerebrales, desde niveles moleculares hasta conductuales, son cada vez más grandes en tamaño complejidad. Estos desarrollos llevan una fuerte demanda herramientas métodos apropiados que modelen analicen los cerebral, como proporcionados por teoría grafos. Esta breve revisión examina algunas medidas técnicas gráficas comúnmente empleadas neurobiológicamente discriminadoras. Entre estas, particularmente importantes detección módulos o comunidades redes, identificación elementos centrales facilitan comunicación transferencia señales. Algunas tendencias emergentes el empleo creciente modelos generativos, dinámicas (de tiempo variable) multicapa, así aplicación topología algebraica. En general, grafos especialmente para comprender arquitectura, desarrollo evolución cerebrales.La des réseaux est domaine florissant qui s'étend rapidement. Les données empiriques sur les cérébraux, l'échelle moléculaire à comportementale, ne cessent d'augmenter volume et complexité. Ces développements génèrent une demande forte d'outils méthodes appropriés pour modéliser analyser comme celles fournies par théorie graphes. Dans cette rapide analyse, nous examinons certaines techniques mesures graphes plus couramment utilisées signifiantes neurobiologiquement. Parmi elles, détection modules ou communautés l'identification éléments réseau facilite le transfert du signal, sont particulièrement marquantes. tendances émergentes, note l'utilisation croissante modèles génératifs, dynamiques (variables avec temps) multi-couches, ainsi l'application topologie algébrique. Globalement, essentielles comprendre l'architecture, développement l'évolution cérébraux.

Процитировано

512

On the nature and use of models in network neuroscience DOI
Danielle S. Bassett, Perry Zurn, Joshua I. Gold

и другие.

Nature reviews. Neuroscience, Год журнала: 2018, Номер 19(9), С. 566 - 578

Опубликована: Июль 12, 2018

Язык: Английский

Процитировано

380

The physics of brain network structure, function and control DOI
Christopher W. Lynn, Danielle S. Bassett

Nature Reviews Physics, Год журнала: 2019, Номер 1(5), С. 318 - 332

Опубликована: Март 27, 2019

Язык: Английский

Процитировано

350

Principles of dynamic network reconfiguration across diverse brain states DOI
James M. Shine, Russell A. Poldrack

NeuroImage, Год журнала: 2017, Номер 180, С. 396 - 405

Опубликована: Авг. 3, 2017

Язык: Английский

Процитировано

237

Specificity and robustness of long-distance connections in weighted, interareal connectomes DOI Creative Commons
Richard F. Betzel, Danielle S. Bassett

Proceedings of the National Academy of Sciences, Год журнала: 2018, Номер 115(21)

Опубликована: Май 8, 2018

Brain areas' functional repertoires are shaped by their incoming and outgoing structural connections. In empirically measured networks, most connections short, reflecting spatial energetic constraints. Nonetheless, a small number of span long distances, consistent with the notion that functionality these must outweigh cost. While precise function long-distance is not known, leading hypothesis they act to reduce topological distance between brain areas facilitate efficient interareal communication. However, this implies non-specificity we contend unlikely. Instead, propose serve diversify inputs outputs, thereby promoting complex dynamics. Through analysis five network datasets, show play only minor roles in reducing average distance. contrast, short-range neighbors exhibit marked differences connectivity profiles, suggesting enhance dissimilarity regional outputs. Next, -- isolation profiles non-random levels similarity, communication pathways formed redundancies may promote robustness. Finally, use linearization Wilson-Cowan dynamics simulate covariance structure neural activity absence connections, common measure diversity decreases. Collectively, our findings suggest necessary for supporting diverse

Язык: Английский

Процитировано

221

Distance-dependent consensus thresholds for generating group-representative structural brain networks DOI Creative Commons
Richard F. Betzel, Alessandra Griffa, Patric Hagmann

и другие.

Network Neuroscience, Год журнала: 2018, Номер 3(2), С. 475 - 496

Опубликована: Дек. 10, 2018

Large-scale structural brain networks encode white matter connectivity patterns among distributed areas. These connection are believed to support cognitive processes and, when compromised, can lead neurocognitive deficits and maladaptive behavior. A powerful approach for studying the organizing principles of is construct group-representative from multisubject cohorts. Doing so amplifies signal noise ratios provides a clearer picture network organization. Here, we show that current approaches generating sparse overestimate proportion short-range connections present in as result, fail match subject-level along wide range statistics. We an alternative preserves connection-length distribution individual subjects. have used this method previous papers generate networks, though date its performance has not been appropriately benchmarked compared against other methods. As result simple modification, generated using successfully recapitulate properties, outperforming similar by better preserving features promote integrative function rather than segregative. The developed here holds promise future studies investigating basic organizational large-scale networks.

Язык: Английский

Процитировано

175

Multimodal network dynamics underpinning working memory DOI Creative Commons
Andrew C. Murphy, Maxwell A. Bertolero, Lia Papadopoulos

и другие.

Nature Communications, Год журнала: 2020, Номер 11(1)

Опубликована: Июнь 15, 2020

Working memory (WM) allows information to be stored and manipulated over short time scales. Performance on WM tasks is thought supported by the frontoparietal system (FPS), default mode (DMS), interactions between them. Yet little known about how these systems their relate individual differences in performance. We address this gap knowledge using functional MRI data acquired during performance of a 2-back task, as well diffusion tensor imaging collected same individuals. show that strength FPS DMS task engagement inversely correlated with performance, modulated activation regions but not regions. Next, we use clustering algorithm identify two distinct subnetworks FPS, find display distinguishable patterns gene expression. Activity one subnetwork positively associated FPS-DMS interactions, while activity second negatively associated. Further, pattern structural linkages explains differential capacity influence interactions. To determine whether observations could provide mechanistic account large-scale neural underpinnings WM, build computational model composed coupled oscillators. Modulating amplitude causes expected change thereby offering support for mechanism which tunes Broadly, our study presents holistic regional activity, together humans.

Язык: Английский

Процитировано

144

The neuropeptidergic connectome of C. elegans DOI Creative Commons
Lidia Ripoll-Sánchez, Jan Watteyne, HaoSheng Sun

и другие.

Neuron, Год журнала: 2023, Номер 111(22), С. 3570 - 3589.e5

Опубликована: Ноя. 1, 2023

Efforts are ongoing to map synaptic wiring diagrams, or connectomes, understand the neural basis of brain function. However, chemical synapses represent only one type functionally important neuronal connection; in particular, extrasynaptic, "wireless" signaling by neuropeptides is widespread and plays essential roles all nervous systems. By integrating single-cell anatomical gene-expression datasets with biochemical analysis receptor-ligand interactions, we have generated a draft connectome neuropeptide C. elegans system. This network characterized high connection density, extended cascades, autocrine foci, decentralized topology, large, highly interconnected core containing three constituent communities sharing similar patterns input connectivity. Intriguingly, several key hubs little-studied neurons that appear specialized for peptidergic neuromodulation. We anticipate neuropeptidergic will serve as prototype how networks neuromodulatory organized.

Язык: Английский

Процитировано

99

Structural, geometric and genetic factors predict interregional brain connectivity patterns probed by electrocorticography DOI
Richard F. Betzel, John D. Medaglia, Ari E. Kahn

и другие.

Nature Biomedical Engineering, Год журнала: 2019, Номер 3(11), С. 902 - 916

Опубликована: Май 27, 2019

Язык: Английский

Процитировано

130