Concordance of MERFISH spatial transcriptomics with bulk and single-cell RNA sequencing DOI Creative Commons
Jonathan Liu,

Vanessa Tran,

Venkata Naga Pranathi Vemuri

и другие.

Life Science Alliance, Год журнала: 2022, Номер 6(1), С. e202201701 - e202201701

Опубликована: Дек. 16, 2022

Spatial transcriptomics extends single-cell RNA sequencing (scRNA-seq) by providing spatial context for cell type identification and analysis. Imaging-based technologies such as multiplexed error-robust fluorescence in situ hybridization (MERFISH) can achieve resolution, directly mapping identities to positions. MERFISH produces a different data than scRNA-seq, technical comparison between the two modalities is necessary ascertain how best integrate them. We performed on mouse liver kidney compared resulting bulk statistics with those from Tabula Muris Senis atlas Visium datasets. quantitatively reproduced RNA-seq scRNA-seq results improvements overall dropout rates sensitivity. Finally, we found that independently resolved distinct types structure both kidney. Computational integration did not enhance these results. conclude provides comparable method gene expression identify without need computational atlases.

Язык: Английский

Dictionary learning for integrative, multimodal and scalable single-cell analysis DOI Open Access
Yuhan Hao, Tim Stuart, Madeline H. Kowalski

и другие.

Nature Biotechnology, Год журнала: 2023, Номер 42(2), С. 293 - 304

Опубликована: Май 25, 2023

Язык: Английский

Процитировано

1322

Best practices for single-cell analysis across modalities DOI Open Access
Lukas Heumos, Anna C. Schaar, Christopher Lance

и другие.

Nature Reviews Genetics, Год журнала: 2023, Номер 24(8), С. 550 - 572

Опубликована: Март 31, 2023

Язык: Английский

Процитировано

513

The specious art of single-cell genomics DOI Creative Commons
Tara Chari, Lior Pachter

PLoS Computational Biology, Год журнала: 2023, Номер 19(8), С. e1011288 - e1011288

Опубликована: Авг. 17, 2023

Dimensionality reduction is standard practice for filtering noise and identifying relevant features in large-scale data analyses. In biology, single-cell genomics studies typically begin with to 2 or 3 dimensions produce "all-in-one" visuals of the that are amenable human eye, these subsequently used qualitative quantitative exploratory analysis. However, there little theoretical support this practice, we show extreme dimension reduction, from hundreds thousands 2, inevitably induces significant distortion high-dimensional datasets. We therefore examine practical implications low-dimensional embedding find extensive distortions inconsistent practices make such embeddings counter-productive exploratory, biological lieu this, discuss alternative approaches conducting targeted feature exploration enable hypothesis-driven discovery.

Язык: Английский

Процитировано

180

Characterizing cis-regulatory elements using single-cell epigenomics DOI
Sebastian Preißl, Kyle J. Gaulton, Bing Ren

и другие.

Nature Reviews Genetics, Год журнала: 2022, Номер 24(1), С. 21 - 43

Опубликована: Июль 15, 2022

Язык: Английский

Процитировано

149

Platelet-instructed SPP1+ macrophages drive myofibroblast activation in fibrosis in a CXCL4-dependent manner DOI Creative Commons
Konrad Hoeft,

Gideon J L Schaefer,

Hyojin Kim

и другие.

Cell Reports, Год журнала: 2023, Номер 42(2), С. 112131 - 112131

Опубликована: Фев. 1, 2023

Fibrosis represents the common end stage of chronic organ injury independent initial insult, destroying tissue architecture and driving failure. Here we discover a population profibrotic macrophages marked by expression Spp1, Fn1, Arg1 (termed Spp1 macrophages), which expands after injury. Using an unbiased approach, identify chemokine (C-X-C motif) ligand 4 (CXCL4) to be among top upregulated genes during macrophage differentiation. In vitro in vivo studies show that loss Cxcl4 abrogates differentiation ameliorates fibrosis both heart kidney Moreover, find platelets, most abundant source CXCL4 vivo, drive Single nuclear RNA sequencing with ligand-receptor interaction analysis reveals orchestrate fibroblast activation via Sema3 crosstalk. Finally, confirm expand human disease

Язык: Английский

Процитировано

144

Cross-tissue, single-cell stromal atlas identifies shared pathological fibroblast phenotypes in four chronic inflammatory diseases DOI Creative Commons
Ilya Korsunsky, Kevin Wei, Mathilde Pohin

и другие.

Med, Год журнала: 2022, Номер 3(7), С. 481 - 518.e14

Опубликована: Май 31, 2022

Pro-inflammatory fibroblasts are critical for pathogenesis in rheumatoid arthritis, inflammatory bowel disease, interstitial lung and Sjögren's syndrome represent a novel therapeutic target chronic disease. However, the heterogeneity of fibroblast phenotypes, exacerbated by lack common cross-tissue taxonomy, has limited our understanding which pathways shared multiple diseases.

Язык: Английский

Процитировано

132

Human prefrontal cortex gene regulatory dynamics from gestation to adulthood at single-cell resolution DOI Creative Commons
Charles A. Herring, Rebecca K. Simmons, Saskia Freytag

и другие.

Cell, Год журнала: 2022, Номер 185(23), С. 4428 - 4447.e28

Опубликована: Окт. 31, 2022

Human brain development is underpinned by cellular and molecular reconfigurations continuing into the third decade of life. To reveal cell dynamics orchestrating neural maturation, we profiled human prefrontal cortex gene expression chromatin accessibility at single-cell resolution from gestation to adulthood. Integrative analyses define dynamic trajectories each type, revealing major reconfiguration prenatal-to-postnatal transition in all types followed continuous adulthood identifying regulatory networks guiding developmental programs, states, functions. We uncover links between milestones, characterize diverse timing when cells acquire adult-like identify convergence distinct origins. further their regulators implicated neurological disorders. Finally, using this reference, benchmark identities maturation states organoid models. Together, captures landscape cortical development.

Язык: Английский

Процитировано

128

The Specious Art of Single-Cell Genomics DOI Creative Commons
Tara Chari, Lior Pachter

bioRxiv (Cold Spring Harbor Laboratory), Год журнала: 2021, Номер unknown

Опубликована: Авг. 26, 2021

Abstract Dimensionality reduction is standard practice for filtering noise and identifying relevant features in large-scale data analyses. In biology, single-cell genomics studies typically begin with to two or three dimensions produce ‘all-in-one’ visuals of the that are amenable human eye, these subsequently used qualitative quantitative exploratory analysis. However, there little theoretical support this practice, we show extreme dimension reduction, from hundreds thousands two, inevitably induces significant distortion high-dimensional datasets. We therefore examine practical implications low-dimensional embedding data, find extensive distortions inconsistent practices make such embeddings counter-productive exploratory, biological lieu this, discuss alternative approaches conducting targeted feature exploration, enable hypothesis-driven discovery.

Язык: Английский

Процитировано

118

Dictionary learning for integrative, multimodal, and scalable single-cell analysis DOI Creative Commons
Yuhan Hao, Tim Stuart, Madeline H. Kowalski

и другие.

bioRxiv (Cold Spring Harbor Laboratory), Год журнала: 2022, Номер unknown

Опубликована: Фев. 26, 2022

Abstract Mapping single-cell sequencing profiles to comprehensive reference datasets represents a powerful alternative unsupervised analysis. Reference datasets, however, are predominantly constructed from RNA-seq data, and cannot be used annotate that do not measure gene expression. Here we introduce ‘bridge integration’, method harmonize singlecell across modalities by leveraging multi-omic dataset as molecular bridge. Each cell in the comprises an element ‘dictionary’, which can reconstruct unimodal transform them into shared space. We demonstrate our procedure accurately transcriptomic data with independent single measurements of chromatin accessibility, histone modifications, DNA methylation, protein levels. Moreover, how dictionary learning combined sketching techniques substantially improve computational scalability, 8.6 million human immune mass cytometry experiments. Our approach aims broaden utility facilitate comparisons diverse modalities. Availability Installation instructions, documentations, vignettes available at http://www.satijalab.org/seurat

Язык: Английский

Процитировано

110

Human Bone Marrow Organoids for Disease Modeling, Discovery, and Validation of Therapeutic Targets in Hematologic Malignancies DOI Creative Commons
Abdullah O. Khan, Antonio Rodriguez-Romera, Jasmeet S. Reyat

и другие.

Cancer Discovery, Год журнала: 2022, Номер 13(2), С. 364 - 385

Опубликована: Ноя. 9, 2022

Abstract A lack of models that recapitulate the complexity human bone marrow has hampered mechanistic studies normal and malignant hematopoiesis validation novel therapies. Here, we describe a step-wise, directed-differentiation protocol in which organoids are generated from induced pluripotent stem cells committed to mesenchymal, endothelial, hematopoietic lineages. These 3D structures capture key features marrow—stroma, lumen-forming sinusoids, myeloid including proplatelet-forming megakaryocytes. The supported engraftment survival patients with blood malignancies, cancer types notoriously difficult maintain ex vivo. Fibrosis organoid occurred following TGFβ stimulation myelofibrosis but not healthy donor–derived cells, validating this platform as powerful tool for their interactions within marrow–like milieu. This enabling technology is likely accelerate discovery prioritization targets disorders cancers. Significance: We present supports growth primary lymphoid model allows cancers context microenvironment provides much-needed vivo new therapeutics. See related commentary by Derecka Crispino, p. 263. article highlighted In Issue feature, 247

Язык: Английский

Процитировано

86