Concordance of MERFISH spatial transcriptomics with bulk and single-cell RNA sequencing DOI Creative Commons
Jonathan Liu,

Vanessa Tran,

Venkata Naga Pranathi Vemuri

и другие.

Life Science Alliance, Год журнала: 2022, Номер 6(1), С. e202201701 - e202201701

Опубликована: Дек. 16, 2022

Spatial transcriptomics extends single-cell RNA sequencing (scRNA-seq) by providing spatial context for cell type identification and analysis. Imaging-based technologies such as multiplexed error-robust fluorescence in situ hybridization (MERFISH) can achieve resolution, directly mapping identities to positions. MERFISH produces a different data than scRNA-seq, technical comparison between the two modalities is necessary ascertain how best integrate them. We performed on mouse liver kidney compared resulting bulk statistics with those from Tabula Muris Senis atlas Visium datasets. quantitatively reproduced RNA-seq scRNA-seq results improvements overall dropout rates sensitivity. Finally, we found that independently resolved distinct types structure both kidney. Computational integration did not enhance these results. conclude provides comparable method gene expression identify without need computational atlases.

Язык: Английский

Detection of cell–cell interactions via photocatalytic cell tagging DOI
Rob Oslund, Tamara Reyes Robles, Cory White

и другие.

Nature Chemical Biology, Год журнала: 2022, Номер 18(8), С. 850 - 858

Опубликована: Июнь 2, 2022

Язык: Английский

Процитировано

77

Automatic cell-type harmonization and integration across Human Cell Atlas datasets DOI Creative Commons
Chuan Xu, Martin Prete, Simone Webb

и другие.

Cell, Год журнала: 2023, Номер 186(26), С. 5876 - 5891.e20

Опубликована: Дек. 1, 2023

Harmonizing cell types across the single-cell community and assembling them into a common framework is central to building standardized Human Cell Atlas. Here, we present CellHint, predictive clustering tree-based tool resolve cell-type differences in annotation resolution technical biases datasets. CellHint accurately quantifies cell-cell transcriptomic similarities places relationship graph that hierarchically defines shared unique subtypes. Application multiple immune datasets recapitulates expert-curated annotations. also reveals underexplored relationships between healthy diseased lung states eight diseases. Furthermore, workflow for fast cross-dataset integration guided by harmonized hierarchy, which uncovers underappreciated adult human hippocampus. Finally, apply 12 tissues from 38 datasets, providing deeply curated cross-tissue database with ∼3.7 million cells various machine learning models automatic tissues.

Язык: Английский

Процитировано

71

An immune cell atlas reveals the dynamics of human macrophage specification during prenatal development DOI Creative Commons
Zeshuai Wang, Zhisheng Wu, Hao Wang

и другие.

Cell, Год журнала: 2023, Номер 186(20), С. 4454 - 4471.e19

Опубликована: Сен. 1, 2023

Язык: Английский

Процитировано

65

Biologically informed deep learning to query gene programs in single-cell atlases DOI Creative Commons
Mohammad Lotfollahi, Sergei Rybakov, Karin Hrovatin

и другие.

Nature Cell Biology, Год журнала: 2023, Номер unknown

Опубликована: Фев. 2, 2023

Abstract The increasing availability of large-scale single-cell atlases has enabled the detailed description cell states. In parallel, advances in deep learning allow rapid analysis newly generated query datasets by mapping them into reference atlases. However, existing data transformations learned to map are not easily explainable using biologically known concepts such as genes or pathways. Here we propose expiMap, a informed deep-learning architecture that enables mapping. ExpiMap learns cells understandable components representing ‘gene programs’. activity each for gene program is while simultaneously refining and de novo programs. We show expiMap compares favourably methods bringing an additional layer interpretability integrative analysis. Furthermore, demonstrate its applicability analyse perturbation responses different tissues species resolve patients who have coronavirus disease 2019 treatments across types.

Язык: Английский

Процитировано

57

An atlas of cells in the human tonsil DOI Creative Commons
Ramon Massoni-Badosa, Sergio Aguilar-Fernández, Juan C. Nieto

и другие.

Immunity, Год журнала: 2024, Номер 57(2), С. 379 - 399.e18

Опубликована: Янв. 31, 2024

Palatine tonsils are secondary lymphoid organs (SLOs) representing the first line of immunological defense against inhaled or ingested pathogens. We generated an atlas human tonsil composed >556,000 cells profiled across five different data modalities, including single-cell transcriptome, epigenome, proteome, and immune repertoire sequencing, as well spatial transcriptomics. This census identified 121 cell types states, defined developmental trajectories, enabled understanding functional units tonsil. Exemplarily, we stratified myeloid slan-like subtypes, established a BCL6 enhancer locally active in follicle-associated T B cells, SIX5 putative transcriptional regulator plasma maturation. Analyses validation cohort confirmed presence, annotation, markers tonsillar provided evidence age-related compositional shifts. demonstrate value this resource by annotating from cell-derived mantle lymphomas, linking heterogeneity to normal differentiation states

Язык: Английский

Процитировано

48

The future of rapid and automated single-cell data analysis using reference mapping DOI Creative Commons
Mohammad Lotfollahi, Yuhan Hao, Fabian J. Theis

и другие.

Cell, Год журнала: 2024, Номер 187(10), С. 2343 - 2358

Опубликована: Май 1, 2024

As the number of single-cell datasets continues to grow rapidly, workflows that map new data well-curated reference atlases offer enormous promise for biological community. In this perspective, we discuss key computational challenges and opportunities reference-mapping algorithms. We how mapping algorithms will enable integration diverse across disease states, molecular modalities, genetic perturbations, species eventually replace manual laborious unsupervised clustering pipelines.

Язык: Английский

Процитировано

25

Single-cell and spatial atlases of spinal cord injury in the Tabulae Paralytica DOI
Michael A. Skinnider, Matthieu Gautier, Yue Yang Teo

и другие.

Nature, Год журнала: 2024, Номер 631(8019), С. 150 - 163

Опубликована: Июнь 19, 2024

Язык: Английский

Процитировано

24

Interferon subverts an AHR–JUN axis to promote CXCL13+ T cells in lupus DOI
Calvin Law, Vanessa Sue Wacleche, Ye Cao

и другие.

Nature, Год журнала: 2024, Номер 631(8022), С. 857 - 866

Опубликована: Июль 10, 2024

Язык: Английский

Процитировано

22

Single-cell transcriptome landscape of circulating CD4+ T cell populations in autoimmune diseases DOI Creative Commons
Yoshiaki Yasumizu,

Daiki Takeuchi,

Reo Morimoto

и другие.

Cell Genomics, Год журнала: 2024, Номер 4(2), С. 100473 - 100473

Опубликована: Янв. 3, 2024

CD4+ T cells are key mediators of various autoimmune diseases; however, their role in disease progression remains unclear due to cellular heterogeneity. Here, we evaluated cell subpopulations using decomposition-based transcriptome characterization and canonical clustering strategies. This approach identified 12 independent gene programs governing whole heterogeneity, which can explain the ambiguity clustering. In addition, performed a meta-analysis public single-cell datasets over 1.8 million peripheral from 953 individuals by projecting onto reference cataloging frequency qualitative alterations populations 20 diseases. The analyses revealed that transcriptional were useful characterizing each predicting its clinical status. Moreover, genetic variants associated with diseases showed disease-specific enrichment within programs. results collectively provide landscape transcriptomes involved disease.

Язык: Английский

Процитировано

20

Neoadjuvant PARPi or chemotherapy in ovarian cancer informs targeting effector Treg cells for homologous-recombination-deficient tumors DOI Creative Commons
Yikai Luo, Yu Xia, Dan Liu

и другие.

Cell, Год журнала: 2024, Номер 187(18), С. 4905 - 4925.e24

Опубликована: Июль 5, 2024

Homologous recombination deficiency (HRD) is prevalent in cancer, sensitizing tumor cells to poly (ADP-ribose) polymerase (PARP) inhibition. However, the impact of HRD and related therapies on microenvironment (TME) remains elusive. Our study generates single-cell gene expression T cell receptor profiles, along with validatory multimodal datasets from >100 high-grade serous ovarian cancer (HGSOC) samples, primarily a phase II clinical trial (NCT04507841). Neoadjuvant monotherapy PARP inhibitor (PARPi) niraparib achieves impressive 62.5% 73.6% response rates per RECIST v.1.1 GCIG CA125, respectively. We identify effector regulatory (eTregs) as key responders neoadjuvant therapies, co-occurring other tumor-reactive cells, particularly terminally exhausted CD8+ (Tex). TME-wide interferon signaling correlates upregulating MHC class co-inhibitory ligands, potentially driving Treg Tex fates. Depleting eTregs mouse models, or without inhibition, significantly suppresses growth observable toxicities, underscoring potential eTreg-focused therapeutics for HGSOC HRD-related tumors.

Язык: Английский

Процитировано

20