Dictionary learning for integrative, multimodal and scalable single-cell analysis
Nature Biotechnology,
Год журнала:
2023,
Номер
42(2), С. 293 - 304
Опубликована: Май 25, 2023
Язык: Английский
Single-cell chromatin state analysis with Signac
Nature Methods,
Год журнала:
2021,
Номер
18(11), С. 1333 - 1341
Опубликована: Ноя. 1, 2021
Язык: Английский
ArchR is a scalable software package for integrative single-cell chromatin accessibility analysis
Nature Genetics,
Год журнала:
2021,
Номер
53(3), С. 403 - 411
Опубликована: Фев. 25, 2021
Abstract
The
advent
of
single-cell
chromatin
accessibility
profiling
has
accelerated
the
ability
to
map
gene
regulatory
landscapes
but
outpaced
development
scalable
software
rapidly
extract
biological
meaning
from
these
data.
Here
we
present
a
suite
for
analysis
in
R
(ArchR;
https://www.archrproject.com/
)
that
enables
fast
and
comprehensive
ArchR
provides
an
intuitive,
user-focused
interface
complex
analyses,
including
doublet
removal,
clustering
cell
type
identification,
unified
peak
set
generation,
cellular
trajectory
DNA
element-to-gene
linkage,
transcription
factor
footprinting,
mRNA
expression
level
prediction
multi-omic
integration
with
RNA
sequencing
(scRNA-seq).
Enabling
over
1.2
million
single
cells
within
8
h
on
standard
Unix
laptop,
is
end-to-end
will
accelerate
understanding
regulation
at
resolution
individual
cells.
Язык: Английский
Chromatin Potential Identified by Shared Single-Cell Profiling of RNA and Chromatin
Cell,
Год журнала:
2020,
Номер
183(4), С. 1103 - 1116.e20
Опубликована: Окт. 23, 2020
Язык: Английский
scMC learns biological variation through the alignment of multiple single-cell genomics datasets
Genome biology,
Год журнала:
2021,
Номер
22(1)
Опубликована: Янв. 4, 2021
Distinguishing
biological
from
technical
variation
is
crucial
when
integrating
and
comparing
single-cell
genomics
datasets
across
different
experiments.
Existing
methods
lack
the
capability
in
explicitly
distinguishing
these
two
variations,
often
leading
to
removal
of
both
variations.
Here,
we
present
an
integration
method
scMC
remove
while
preserving
intrinsic
variation.
learns
via
variance
analysis
subtract
inferred
unsupervised
manner.
Application
simulated
real
RNA-seq
ATAC-seq
experiments
demonstrates
its
detecting
context-shared
context-specific
signals
accurate
alignment.
Язык: Английский
Lineage tracing meets single-cell omics: opportunities and challenges
Nature Reviews Genetics,
Год журнала:
2020,
Номер
21(7), С. 410 - 427
Опубликована: Март 31, 2020
Язык: Английский
Macrophage diversity in cancer revisited in the era of single-cell omics
Trends in Immunology,
Год журнала:
2022,
Номер
43(7), С. 546 - 563
Опубликована: Июнь 9, 2022
TAMs
have
diverse
functions
in
cancer,
reflecting
the
heterogenous
nature
of
these
immune
cells.
Here,
we
propose
a
new
nomenclature
to
identify
TAM
subsets.Recent
single
cell
multi-omics
technologies,
which
allow
clustering
subsets
an
unbiased
manner,
significantly
advanced
our
understanding
molecular
diversity
mice
and
humans.Novel
mechanisms
potential
therapeutic
targets
been
identified
that
might
regulate
tumor-promoting
function
different
subsets.TAM
opens
promising
opportunities
for
envisaging
putative
cancer
treatments.
Tumor-associated
macrophages
(TAMs)
multiple
potent
and,
thus,
represent
important
targets.
These
highlight
TAMs.
Recent
omics
technologies
However,
unifying
annotation
their
signatures
is
lacking.
review
recent
major
studies
transcriptome,
epigenome,
metabolome,
spatial
with
specific
focus
on
We
also
consensus
model
present
avenues
future
research.
one
most
abundant
types
tumors
[1.Cassetta
L.
Pollard
J.W.
Targeting
macrophages:
approaches
cancer.Nat.
Rev.
Drug
Discov.
2018;
17:
887-904Crossref
PubMed
Scopus
(650)
Google
Scholar].
Since
initial
decade
ago
[2.Qian
B.Z.
Macrophage
enhances
tumor
progression
metastasis.Cell.
2010;
141:
39-51Abstract
Full
Text
PDF
(3151)
Scholar],
functional
now
widely
appreciated,
many
seminal
field
[3.Yang
M.
et
al.Diverse
microenvironments.Cancer
Res.
78:
5492-5503Crossref
(202)
Scholar,
4.DeNardo
D.G.
Ruffell
B.
Macrophages
as
regulators
tumour
immunity
immunotherapy.Nat.
Immunol.
2019;
19:
369-382Crossref
(643)
5.Lopez-Yrigoyen
al.Macrophage
targeting
cancer.Ann.
N.
Y.
Acad.
Sci.
2021;
1499:
18-41Crossref
(25)
This
array
includes
promotion
growth,
lineage
plasticity,
invasion,
remodeling
extracellular
matrix,
crosstalk
endothelial,
mesenchymal
stromal
cells,
other
cells;
effects
can
result
progression,
metastasis
(see
Glossary),
therapy
resistance
[6.Mantovani
A.
al.Tumour-associated
treatment
oncology.Nat.
Clin.
Oncol.
2017;
14:
399-416Crossref
(1675)
Scholar,7.Guc
E.
Redefining
macrophage
neutrophil
biology
metastatic
cascade.Immunity.
54:
885-902Abstract
(13)
With
wide
application
years
seen
explosion
data
illustrating
cellular
heterogeneity
resulting
unprecedented
amount
information
TAMs,
regardless
main
studies.
Links
between
are
emerging.
terminology
lacking,
making
direct
comparisons
full
utilization
sets
difficult.
In
this
review,
summarize
human
data;
include
traditional
nomenclatures,
at
levels
single-cell
transcriptomic,
epigenomic,
metabolic
multi-omics,
opportunities,
directions.
subsets.
hope
will
serve
starting
point
help
build
complete
picture
dynamic
interactions
tumor,
well
microenvironment
(TME).
A
used
describe
has
now-obsolete
M1/M2
model,
proposed
~20
ago;
it
separated
into
two
distinct
arms:
M1
or
'classically'
activated;
M2
'alternatively'
activated,
largely
based
vitro
stimulating
type
1
2
cytokines
[8.Mills
C.D.
al.M-1/M-2
Th1/Th2
paradigm.J.
2000;
164:
6166-6173Crossref
The
newer
term
'M1-like'
phenotype
typically
described
proinflammatory
induced
by
Toll-like
receptor
(TLR)
ligands
cytokines,
namely
IFN-γ
TNF-α.
Conversely,
'M2-like'
having
anti-inflammatory
characteristics,
being
activated
interleukin
(IL)-4
IL-13,
producing
TGF-β
profibrotic
factors.
nomenclature,
albeit
used,
remains
oversimplified
[9.Martinez
F.O.
Gordon
S.
paradigm
activation:
time
reassessment.F1000Prime
Rep.
2014;
6:
13Crossref
(2673)
Scholar,10.Nahrendorf
Swirski
F.K.
Abandoning
network
function.Circ.
2016;
119:
414-417Crossref
(195)
Indeed,
significant
morphology,
function,
surface
marker
expression
observed
resident-tissue
(RTMs)
from
organs
[11.Bleriot
C.
al.Determinants
resident
tissue
identity
function.Immunity.
2020;
52:
957-970Abstract
(94)
Scholar];
moreover,
co-expression
both
gene
almost
all
[12.Mulder
K.
al.Cross-tissue
landscape
monocytes
health
disease.Immunity.
1883-1900Abstract
Therefore,
spectrum
polarization
relates
represents
more
sensible
approach
describing
[10.Nahrendorf
Scholar,13.Mosser
D.M.
Edwards
J.P.
Exploring
activation.Nat.
2008;
8:
958-969Crossref
(5864)
normal
homeostasis,
tightly
regulated
niche-like
local
environment,
recently
[14.Guilliams
al.Establishment
maintenance
niche.Immunity.
434-451Abstract
(138)
Another
layer
derives
origin.
Using
lineage-tracing
mice,
illustrated
mouse
RTMs
derived
early
erythromyeloid
progenitors
formed
either
yolk
sac
fetal
liver
[15.Geissmann
F.
al.Blood
consist
principal
migratory
properties.Immunity.
2003;
71-82Abstract
(2514)
Scholar,16.Gomez
Perdiguero
al.Tissue-resident
originate
yolk-sac-derived
erythro-myeloid
progenitors.Nature.
2015;
518:
547-551Crossref
(1236)
Additionally,
adult
may
derive
circulating
monocytic
precursors
(monocytes)
bone
marrow
[17.Cox
al.Origins,
biology,
diseases
macrophages.Annu.
39:
313-344Crossref
(1)
monocyte
contribution
varies
among
organs.
For
example,
steady
state,
microglia
central
nervous
system
(CNS)
solely
[18.Hoeffel
G.
al.C-Myb(+)
progenitor-derived
give
rise
tissue-resident
macrophages.Immunity.
42:
665-678Abstract
(611)
while
dermal
embryonic
origin
[19.Kolter
J.
al.A
subset
skin
contributes
surveillance
regeneration
nerves.Immunity.
50:
1482-1497Abstract
(69)
appreciated
repeatedly
reviewed
[20.Pathria
P.
al.Targeting
tumor-associated
cancer.Trends
40:
310-327Abstract
(382)
Scholar,21.Guerriero
J.L.
Macrophages:
road
less
traveled,
changing
anticancer
therapy.Trends
Mol.
Med.
24:
472-489Abstract
(143)
Similar
counterparts
not
only
its
ontogeny,
but
cues,
including
type,
organ,
subanatomic
Identifying
basis
over
past
[5.Lopez-Yrigoyen
advancements
unveiling
multidimensional
complexity
manner.
research,
oncology
eventually
fully
understand
cells
hopefully
use
improve
precision
diagnosis
therapy.
Single
RNA
sequencing
(scRNA-seq)
technology
revolutionized
providing
in-depth
transcriptome
level
[22.Giladi
al.Single-cell
characterization
haematopoietic
trajectories
homeostasis
perturbed
haematopoiesis.Nat.
Cell
Biol.
20:
836-846Crossref
(139)
substantial
advances
available
experimental
techniques
bioinformatics
pipelines
years,
scRNA-seq
investigate
[23.Lawson
D.A.
al.Tumour
resolution.Nat.
1349-1360Crossref
(230)
Scholar,24.Ren
X.
al.Insights
gained
analysis
microenvironment.Annu.
583-609Crossref
(15)
transcriptomic
remain
Two
large-scale
pan-cancer
provided
valuable
regarding
diversity.
One
study
analyzed
myeloid
380
samples
across
15
210
patients
through
combination
newly
collected
eight
published
[25.Cheng
transcriptional
atlas
infiltrating
cells.Cell.
184:
792-809Abstract
(111)
Comparison
consistent
presence
CD14+
CD16+
tumor-infiltrating
(TIMs),
LYVE1+
interstitial
non-cancer
tissues,
seven
clusters:
INHBA+
C1QC+
ISG15+
LNRP3+
SPP1+
compiled
mononuclear
phagocytes
(MNPs)
isolated
41
13
types,
six
common
universe,
termed
MNP-VERSE.
Monocyte
clusters
were
then
extracted
reintegrated
generate
MoMac-VERSEi.
regulatory
inference
(SCENIC)
[26.Aibar
al.SCENIC:
clustering.Nat.
Methods.
1083-1086Crossref
(1003)
authors
classical
monocytes,
nonclassical
five
(HES1
TAM,
C1Qhi
TREM2
IL4I1
proliferating
TAMs)
Although
nomenclatures
studies,
others,
pattern
transcriptomics
By
reviewing
journals,
found
preserved
(Table
1).
Based
signature
genes,
enriched
pathways,
predicated
naming
interferon-primed
(IFN-TAMs),
(Reg-TAMs),
inflammatory
cytokine-enriched
(Inflam-TAMs),
lipid-associated
(LA-TAMs),
pro-angiogenic
(Angio-TAMs),
RTM-like
(RTM-TAMs),
(Prolif-TAMs)
Figure
1,
Key
figure).
Furthermore,
three
TIMs
Box
1).Table
1Mouse
various
TMEsaBlack
font:
genes
clusters;
blue
protein
markers
Underline:
CITE-seq;
Bold:
key
reported
than
paper.,
bAbbreviations:
BRCA,
breast
cancer;
CAF,
cancer-associated
macrophage;
CITE-seq,
indexing
transcriptomes
epitopes
sequencing;
CRC,
colorectal
CyTOF,
Mass
cytometry
flight;
ECM,
matrix;
ESCA,
esophageal
carcinoma;
GC,
gastric
HCC,
hepatocellular
HNC,
head
neck
i.v.,
intravenous;
IF,
immunofluorescent
staining;
INs-seq,
intracellular
staining
LCM,
laser
capture
microdissection;
LYM,
lymphoma;
MEL,
melanoma;
Mets,
metastasis;
mIHC,
multiplex
immunochemistry
MMY,
myeloma;
N/A,
available;
NPC,
nasopharyngeal
NSCLC,
nonsmall
lung
OS,
osteosarcoma;
OVC,
ovarian
PDAC,
pancreatic
ductal
adenocarcinoma;
PRAC,
prostate
RCC,
renal
Reg-TAMs,
TAMs;
SARC,
sarcoma;
sc-MS,
mass
spectrometry;
SEPN,
spinal
ependymomas;
SKC,
ST,
transcriptomics;
s.c.,
subcutaneous;
macrophages;
THCA,
thyroid
UCEC,
uterine
corpus
endometrial
carcinoma.AnnotationSpeciesSignatureTFCancer
typeFunction/enriched
pathwayAssayRefsIFN-TAMsHumanCASP1,
CASP4,
CCL2/3/4/7/8,
CD274hi,
CD40,
CXCL2/3/9/10/11,
IDO1,
IFI6,
IFIT1/2/3,
IFITM1/3,
IRF1,
IRF7,
ISG15,
LAMP3,
PDCD1LG2hi,
TNFSF10,
C1QA/C,
CD38,
IL4I1,
IFI44LSTAT1
IRF1/7BRCACRCCRC
metsGBMHCCHNCLYMMELMMYNPCNSCLCOSPDACSEPNTHCAUCECApoptosis
regulatorsEnhance
proliferationInflammatory
responsesPromote
Treg
entry
tumorT
exhaustionImmunosuppressionColocalization
exhausted
T
(ST,
IF)Decreased
antigen
presentation
(CyTOF)Suppressed
activation
(in
vitro)IFN-α/γ-IFN
response
signature;
IL2/STAT5;
IL6/JAK/STAT3scRNA-seqCITE-seqmIHCSTNanoString
GeoMx[12.Mulder
Scholar,29.Gubin
M.M.
al.High-dimensional
delineates
lymphoid
compartment
during
successful
immune-checkpoint
therapy.Cell.
175:
1014-1030Abstract
(165)
Scholar,32.Zavidij
O.
reveals
compromised
precursor
stages
myeloma.Nat.
Cancer.
1:
493-506Crossref
33.Zhou
intratumoral
immunosuppressive
osteosarcoma.Nat.
Commun.
11:
6322Crossref
(74)
34.Zhang
Q.
al.Interrogation
microenvironmental
ependymomas
dual
macrophages.Nat.
12:
6867Crossref
(0)
Scholar,45.Wu
al.Spatiotemporal
level.Cancer
134-153Crossref
(10)
Scholar,52.Pombo
Antunes
A.R.
profiling
glioblastoma
species
disease
stage
competition
specialization.Nat.
Neurosci.
595-610Crossref
(78)
Scholar,\81.Wu
S.Z.
spatially
resolved
cancers.Nat.
Genet.
53:
1334-1347Crossref
(47)
Scholar,83.Pelka
al.Spatially
organized
multicellular
hubs
cancer.Cell.
4734-4752Abstract
(29)
Scholar]CD14+,
CD11b+,
CD68+,
PD-L1hi,
PD-L2hi,
CD80hi,
CD86hi,
MHCIIhi,
CD86+,
MRC1–,
SIGLEC1–,
HLA-DRlo,
CD314+,
CD107a+,
CD86,
TLR4,
CD44
(CITE-seq)MouseCcl2/7/8,
Cd274,
Cxcl9/10/11,
Ifit1/2/3,
Ifit3,
Ifitm1/3,
Il7r,
Isg15,
Nos2,
Rsad2,
Tnfsf10,
Stat1N/ACT26
s.c.
CRCCT26
intrasplenic
mets
modelT3
SARC
(s.c.)Orthotopic
GL261
GBMIFN
signaturescRNA-seqCITE-seqmIHC[29.Gubin
Scholar]Inflam-TAMsHumanCCL2/3/4/5/20,
CCL3L1,
CCL3L3,
CCL4L2,
CCL4L4,
CXCL1/2/3/5/8,
G0S2,
IL1B,
IL1RN,
IL6,
INHBA,
KLF2/6,
NEDD9,
PMAIP1,
S100A8/A9,
SPP1EGR3
IKZF1
NFKB1
NFE2L2
RELCRCCRC
metsOSSEPNGCRecruiting
regulating
cellsCNS
inflammation-associated
chemokinesPromotes
inflammationNeutrophil
recruitment
lumenT
interaction
(IHC)TNF
signaling;
WNTImmune
check
pointsscRNA-seqmIHCNanoString
GeoMx[31.Che
L.-H.
metastases
reprogramming
preoperative
chemotherapy.Cell
Discovery.
7:
80Crossref
(4)
Scholar,33.Zhou
Scholar,34.Zhang
Scholar,42.Sathe
genomic
microenvironment.Clin.
Cancer
26:
2640-2653Crossref
(66)
43.Zhang
al.Dissecting
underlying
premalignant
lesions
cancer.Cell
27:
1934-1947Abstract
(104)
44.Yin
H.
map
development
using
sequencing.Front.
12728169Crossref
45.Wu
Scholar]MouseCxcl1/2/3/5/8,
Ccl20,
Ccl3l1,
Il1rn,
Il1b,
G0s2,
Inhba,
Spp1N/ACT26
CRC
CT26
modelChemokine
productionImmunosuppressionscRNA-seq[45.Wu
Scholar]LA-TAMsHumanACP5,
AOPE,
APOC1,
ATF1,
C1QA/B/C,
CCL18,
CD163,
CD36,
CD63,
CHI3L1,
CTSB/D/L,
F13A1,
FABP5,
FOLR2,
GPNMB,
IRF3,
LGALS3,
LIPA,
LPL,
MACRO,
MerTK,
MMP7/9/12,
MRC1,
NR1H3,
NRF1,
NUPR1,
PLA2G7,
RNASE1,
SPARC,
SPP1,
TFDP2,
TREM2,
ZEB1FOS/JUN
HIF1A
MAF/MAFB
NR1H3
TCF4
TFECBRCACRCCRC
metsGBMGCHCCHNCNPCNSCLCOSPDACPhagocytosisPromotion
EMTComplement
activationECM
degradationAntigen
processing
pathwaysATP
biosynthetic
processesCanonical
M2-like
pathwaysFatty
acid
metabolismImmunosuppressionInflammationIron
ion
signalingscRNA-seqSMART-seq2CITE-seqmIHCST[12.Mulder
Scholar,27.Zilionis
R.
cancers
conserved
populations
individuals
species.Immunity.
1317-1334Abstract
(424)
Scholar,28.Yang
non-small
differences
sexes.Front.
12756722Google
Scholar,30.Zhang
analyses
inform
myeloid-targeted
therapies
colon
181:
442-459Abstract
(246)
Scholar,31.Che
Scholar,50.Chen
Y.P.
subtypes
associated
prognosis
carcinoma.Cell
30:
1024-1042Crossref
(71)
Scholar,81.Wu
Scholar]CD9+,
CD80+,
MAF,
CD163lo/-,
CD206+/lo,
CD71+,
CD72+,
CD73,
ICOSL,
CD40LG,
Thy-1
(CITE-seq)MouseAcp5,
Apoc1,
Apoe,
C1qa/B/C,
Ccl18,
Ccl8,
Cd163,
Cd206,
Cd36,
Cd63,
Ctsb/d/l,
Cxcl9,
Fabp5,
Folr2,
Gpnmb,
Lgals3,
Macro,
Mrc1,
Trem2MAFCT26
Orthotopic
GBM
7940b
orthotopic
iKras
p53
PDAC
metsPhagocytosisAntigen
presentationFatty
metabolismComplement
activationscRNA-seqCITE-seqmIHC[45.Wu
Scholar,46.Kemp
S.B.
al.Pancreatic
marked
complement-high
blood
tumor–associated
macrophages.Life
Alliance.
4e202000935Crossref
Scholar]Angio-TAMsHumanADAM8,
AREG,
BNIP3,
CCL2/4/20,
CD300E,
CD44,
CD55,
CEBPB,
CLEC5A,
CTSB,
EREG,
FCN1,
FLT1,
FN1,
HES1,
IL8,
MIF,
OLR1,
PPARG,
S100A8/9/12,
SERPINB2,
SLC2A1,
SPIC,
THBS1,
TIMP1,
VCAN,
VEGFABACH1
CEBPB
FOSL2
HIFA
KLF5
MAF
RUNX1
SPIC
TEAD1
ZEB2BRCACRCCRCCRC
metsESCAGBMGCHCCMELNPCNPCNSCLCOVCPDACPDAC
metsRCCSEPNTHCAUCECAngiogenesisCAF
interactionECM
proteolysis;
ECM
interactionPromotion
EMTHIF
pathway;
NF-kB
Notch
VEGF
signalingJuxtaposed
PLVAP+/DLL4+
endothelial
(IF)scRNA-seqSMART-seq2CITE-seqNanoString
GeoMx[25.Cheng
Scholar,41.Sharma
al.Onco-fetal
drives
carcinoma.Cell.
183:
377-394Abstract
(103)
Scholar,49.Raghavan
al.Microenvironment
drug
6119-6137Abstract
Scholar,67.Zhao
revealed
promoted
progression.J.
Transl.
454Crossref
Scholar]CD52hi,
CD163hi,
CD206hi,
CXCR4+,
CD354+,
FOSL2,
VEGFAMouseArg1,
Adam8,
Bnip3,
Mif,
Slc2a1N/AOrthotopic
modelHIF
signalingAngiogenesisscRNA-seqCITE-seq[52.Pombo
Scholar]Reg-TAMsHumanCCL2,
CD274,
CD80,
CHIT1,
CX3CR1,
HLA-A/C,
HLA-DQA1/B1,
HLA-DRA/B1/B5,
ICOSLG,
IL-10,
ITGA4,
LGALS9,
MAC
Язык: Английский
Scalable, multimodal profiling of chromatin accessibility, gene expression and protein levels in single cells
Nature Biotechnology,
Год журнала:
2021,
Номер
39(10), С. 1246 - 1258
Опубликована: Июнь 3, 2021
Язык: Английский
A human cell atlas of fetal chromatin accessibility
Science,
Год журнала:
2020,
Номер
370(6518)
Опубликована: Ноя. 13, 2020
The
genomics
of
human
development
Understanding
the
trajectory
a
developing
requires
an
understanding
how
genes
are
regulated
and
expressed.
Two
papers
now
present
pooled
approach
using
three
levels
combinatorial
indexing
to
examine
single-cell
gene
expression
chromatin
landscapes
from
15
organs
in
fetal
samples.
Cao
et
al.
focus
on
measurements
RNA
broadly
distributed
cell
types
provide
insights
into
organ
specificity.
Domcke
examined
accessibility
cells
these
identify
regulatory
elements
that
regulate
expression.
Together,
analyses
generate
comprehensive
atlases
early
development.
Science
,
this
issue
p.
eaba7721
eaba7612
Язык: Английский
Comprehensive analysis of single cell ATAC-seq data with SnapATAC
Nature Communications,
Год журнала:
2021,
Номер
12(1)
Опубликована: Фев. 26, 2021
Identification
of
the
cis-regulatory
elements
controlling
cell-type
specific
gene
expression
patterns
is
essential
for
understanding
origin
cellular
diversity.
Conventional
assays
to
map
regulatory
via
open
chromatin
analysis
primary
tissues
hindered
by
sample
heterogeneity.
Single
cell
accessible
(scATAC-seq)
can
overcome
this
limitation.
However,
high-level
noise
each
single
profile
and
large
volume
data
pose
unique
computational
challenges.
Here,
we
introduce
SnapATAC,
a
software
package
analyzing
scATAC-seq
datasets.
SnapATAC
dissects
heterogeneity
in
an
unbiased
manner
trajectories
states.
Using
Nyström
method,
process
from
up
million
cells.
Furthermore,
incorporates
existing
tools
into
comprehensive
ATAC-seq
dataset.
As
demonstration
its
utility,
applied
55,592
single-nucleus
profiles
mouse
secondary
motor
cortex.
The
reveals
~370,000
candidate
31
distinct
populations
brain
region
inferred
transcriptional
regulators.
Язык: Английский