STellaris: a web server for accurate spatial mapping of single cells based on spatial transcriptomics data DOI Creative Commons
Xiangshang Li, Chunfu Xiao, Juntian Qi

и другие.

Nucleic Acids Research, Год журнала: 2023, Номер 51(W1), С. W560 - W568

Опубликована: Май 24, 2023

Single-cell RNA sequencing (scRNA-seq) provides insights into gene expression heterogeneities in diverse cell types underlying homeostasis, development and pathological states. However, the loss of spatial information hinders its applications deciphering spatially related features, such as cell-cell interactions a context. Here, we present STellaris (https://spatial.rhesusbase.com), web server aimed to rapidly assign scRNA-seq data based on their transcriptomic similarity with public transcriptomics (ST) data. is founded 101 manually curated ST datasets comprising 823 sections across different organs, developmental stages states from humans mice. accepts raw count matrix type annotation input, maps single cells locations tissue architecture properly matched section. Spatially resolved for intercellular communications, distance ligand-receptor (LRIs), are further characterized between annotated types. Moreover, also expanded application multiple regulatory levels single-cell multiomics data, using transcriptome bridge. was applied several case studies showcase utility adding value ever-growing perspective.

Язык: Английский

A comprehensive benchmarking with practical guidelines for cellular deconvolution of spatial transcriptomics DOI Creative Commons
Haoyang Li, Juexiao Zhou, Zhongxiao Li

и другие.

Nature Communications, Год журнала: 2023, Номер 14(1)

Опубликована: Март 21, 2023

Abstract Spatial transcriptomics technologies are used to profile transcriptomes while preserving spatial information, which enables high-resolution characterization of transcriptional patterns and reconstruction tissue architecture. Due the existence low-resolution spots in recent technologies, uncovering cellular heterogeneity is crucial for disentangling cell types, many related methods have been proposed. Here, we benchmark 18 existing resolving a deconvolution task with 50 real-world simulated datasets by evaluating accuracy, robustness, usability methods. We compare these comprehensively using different metrics, resolutions, spot numbers, gene numbers. In terms performance, CARD, Cell2location, Tangram best conducting task. To refine our comparative results, provide decision-tree-style guidelines recommendations method selection their additional features, will help users easily choose fulfilling concerns.

Язык: Английский

Процитировано

120

Single-cell technologies: From research to application DOI
Lu Wen, Guoqiang Li, Tao Huang

и другие.

The Innovation, Год журнала: 2022, Номер 3(6), С. 100342 - 100342

Опубликована: Окт. 18, 2022

Язык: Английский

Процитировано

84

scDesign3 generates realistic in silico data for multimodal single-cell and spatial omics DOI
Dongyuan Song, Qingyang Wang, Guanao Yan

и другие.

Nature Biotechnology, Год журнала: 2023, Номер 42(2), С. 247 - 252

Опубликована: Май 11, 2023

Язык: Английский

Процитировано

72

Cardiac fibroblasts and mechanosensation in heart development, health and disease DOI
Maurizio Pesce, Georg N. Duda, Giancarlo Forte

и другие.

Nature Reviews Cardiology, Год журнала: 2022, Номер 20(5), С. 309 - 324

Опубликована: Ноя. 14, 2022

Язык: Английский

Процитировано

69

Integrating spatial and single-cell transcriptomics data using deep generative models with SpatialScope DOI Creative Commons

Xiaomeng Wan,

Jiashun Xiao,

Sindy Sing Ting Tam

и другие.

Nature Communications, Год журнала: 2023, Номер 14(1)

Опубликована: Ноя. 29, 2023

The rapid emergence of spatial transcriptomics (ST) technologies is revolutionizing our understanding tissue architecture and biology. Although current ST methods, whether based on next-generation sequencing (seq-based approaches) or fluorescence in situ hybridization (image-based approaches), offer valuable insights, they face limitations either cellular resolution transcriptome-wide profiling. To address these limitations, we present SpatialScope, a unified approach integrating scRNA-seq reference data using deep generative models. With innovation model algorithm designs, SpatialScope not only enhances seq-based to achieve single-cell resolution, but also accurately infers expression levels for image-based data. We demonstrate SpatialScope's utility through simulation studies real analysis from both approaches. provides characterization structures at facilitating downstream analysis, including detecting communication ligand-receptor interactions, localizing subtypes, identifying spatially differentially expressed genes.

Язык: Английский

Процитировано

54

Optimizing Xenium In Situ data utility by quality assessment and best practice analysis workflows DOI Creative Commons
Sergio Marco Salas, Paulo Czarnewski,

Louis B. Kuemmerle

и другие.

bioRxiv (Cold Spring Harbor Laboratory), Год журнала: 2023, Номер unknown

Опубликована: Фев. 14, 2023

Abstract The Xenium In Situ platform is a new spatial transcriptomics product commercialized by 10X Genomics capable of mapping hundreds transcripts in situ at subcellular resolution. Given the multitude commercially available technologies, recommendations choice and analysis guidelines are increasingly important. Herein, we explore eight preview datasets mouse brain two human breast cancer comparing scalability, resolution, data quality, capacities limitations with other spatially resolved technologies. addition, benchmarked performance multiple open source computational tools when applied to tasks including cell segmentation, segmentation-free analysis, selection variable genes domain identification, among others. This study serves as first independent Xenium, provides best-practices for such datasets.

Язык: Английский

Процитировано

44

Cellular architecture of evolving neuroinflammatory lesions and multiple sclerosis pathology DOI Creative Commons
Petra Kukanja, Christoffer Mattsson Langseth, Leslie A. Kirby

и другие.

Cell, Год журнала: 2024, Номер 187(8), С. 1990 - 2009.e19

Опубликована: Март 20, 2024

Multiple sclerosis (MS) is a neurological disease characterized by multifocal lesions and smoldering pathology. Although single-cell analyses provided insights into cytopathology, evolving cellular processes underlying MS remain poorly understood. We investigated the dynamics of modeling temporal regional rates progression in mouse experimental autoimmune encephalomyelitis (EAE). By performing spatial expression profiling using situ sequencing (ISS), we annotated neighborhoods found centrifugal evolution active lesions. demonstrated that disease-associated (DA)-glia arise independently are dynamically induced resolved over course. Single-cell mapping human archival spinal cords confirmed differential distribution homeostatic DA-glia, enabled deconvolution inactive sub-compartments, identified new lesion areas. establishing resource neuropathology at resolution, our study unveils intricate MS.

Язык: Английский

Процитировано

34

Spatiotemporal omics for biology and medicine DOI
Longqi Liu, Ao Chen, Yuxiang Li

и другие.

Cell, Год журнала: 2024, Номер 187(17), С. 4488 - 4519

Опубликована: Авг. 1, 2024

Язык: Английский

Процитировано

24

Challenges and perspectives in computational deconvolution of genomics data DOI

Lana X. Garmire,

Yijun Li, Qianhui Huang

и другие.

Nature Methods, Год журнала: 2024, Номер 21(3), С. 391 - 400

Опубликована: Фев. 19, 2024

Язык: Английский

Процитировано

20

TACCO unifies annotation transfer and decomposition of cell identities for single-cell and spatial omics DOI Creative Commons
Simon Mages,

Noa Moriel,

Inbal Avraham‐Davidi

и другие.

Nature Biotechnology, Год журнала: 2023, Номер 41(10), С. 1465 - 1473

Опубликована: Фев. 16, 2023

Abstract Transferring annotations of single-cell-, spatial- and multi-omics data is often challenging owing both to technical limitations, such as low spatial resolution or high dropout fraction, biological variations, continuous spectra cell states. Based on the concept that these are best described mixtures cells molecules, we present a computational framework for transfer their combinations (TACCO), which consists an optimal transport model extended with different wrappers annotate wide variety data. We apply TACCO identify types states, decipher spatiomolecular tissue structure at molecular level resolve differentiation trajectories using synthetic datasets. While matching exceeding accuracy specialized tools individual tasks, reduces requirements by up order magnitude scales larger datasets (for example, considering runtime annotation 1 M simulated observations).

Язык: Английский

Процитировано

36