Uncovering gene and cellular signatures of immune checkpoint response via machine learning and single-cell RNA-seq DOI Creative Commons

Asaf Pinhasi,

Keren Yizhak

npj Precision Oncology, Год журнала: 2025, Номер 9(1)

Опубликована: Апрель 2, 2025

Язык: Английский

Single-Cell Transcriptomic Approaches for Decoding Non-Coding RNA Mechanisms in Colorectal Cancer DOI Creative Commons
Mahnoor Gondal, Hafiz Muhammad Umer Farooqi

Non-Coding RNA, Год журнала: 2025, Номер 11(2), С. 24 - 24

Опубликована: Март 10, 2025

Non-coding RNAs (ncRNAs) play crucial roles in colorectal cancer (CRC) development and progression. Recent developments single-cell transcriptome profiling methods have revealed surprising levels of expression variability among seemingly homogeneous cells, suggesting the existence many more cell types than previously estimated. This review synthesizes recent advances ncRNA research CRC, emphasizing bioinformatics approaches for their analysis. We explore computational tools used identification, characterization, functional prediction with a focus on RNA sequencing (scRNA-seq) data. The highlights key strategies, including sequence-based structure-based approaches, machine learning applications, multi-omics data integration. discuss how these techniques can be applied to analyze differential expression, perform enrichment, construct regulatory networks involving ncRNAs CRC. Additionally, we examine role leveraging as diagnostic prognostic biomarkers also scRNA-seq studies revealing heterogeneity aims provide comprehensive overview current state CRC outline future directions this rapidly evolving field, integration experimental validation advance our understanding biology

Язык: Английский

Процитировано

0

Uncovering gene and cellular signatures of immune checkpoint response via machine learning and single-cell RNA-seq DOI Creative Commons

Asaf Pinhasi,

Keren Yizhak

npj Precision Oncology, Год журнала: 2025, Номер 9(1)

Опубликована: Апрель 2, 2025

Язык: Английский

Процитировано

0