Опубликована: Май 30, 2024
Язык: Английский
Опубликована: Май 30, 2024
Язык: Английский
Frontiers in Artificial Intelligence, Год журнала: 2024, Номер 7
Опубликована: Окт. 25, 2024
Coverage of ChatGPT-style large language models (LLMs) in the media has focused on their eye-catching achievements, including solving advanced mathematical problems and reaching expert proficiency medical examinations. But gradual adoption LLMs agriculture, an industry which touches every human life, received much less public scrutiny. In this short perspective, we examine risks opportunities related to more widespread food production systems. While can potentially enhance agricultural efficiency, drive innovation, inform better policies, challenges like misinformation, collection vast amounts farmer data, threats jobs are important concerns. The rapid evolution LLM landscape underscores need for policymakers think carefully about frameworks guidelines that ensure responsible use before these technologies become so ingrained policy intervention becomes challenging.
Язык: Английский
Процитировано
6Journal of Agriculture and Food Research, Год журнала: 2025, Номер unknown, С. 101787 - 101787
Опубликована: Март 1, 2025
Язык: Английский
Процитировано
0Technology Knowledge and Learning, Год журнала: 2025, Номер unknown
Опубликована: Март 10, 2025
Язык: Английский
Процитировано
0Food Research International, Год журнала: 2025, Номер unknown, С. 116306 - 116306
Опубликована: Март 1, 2025
Язык: Английский
Процитировано
0Oxford University Press eBooks, Год журнала: 2025, Номер unknown
Опубликована: Апрель 22, 2025
Abstract Smallholder farmers are prone to food insecurity due the devastating effects of viral crop diseases, pest outbreaks, and lack timely, targeted advice. Leveraging Large Language Models (LLMs) in agriculture offers significant potential bridge information gaps that smallholder face. This study discusses development an expert-reviewed agricultural question-answer dataset. We analysed responses from LLMs experts on crop- animal-related questions using relevancy, coherence, fluency metrics. Our results show GPT-4 outperforms other across these LLM-powered systems can act as virtual extension agents, assisting decision-making overcoming farming challenges.
Язык: Английский
Процитировано
0Опубликована: Май 30, 2024
Язык: Английский
Процитировано
0