Frontiers in Energy Research, Год журнала: 2024, Номер 12
Опубликована: Июль 22, 2024
The transformer plays a critical role in maintaining the stability and smooth operation of entire power system, particularly transmission distribution. paper begins by providing an overview traditional fault diagnosis methods for transformers, including dissolved gas analysis vibration techniques, elucidating their developmental trajectory. Building upon these methods, numerous researchers have aimed to enhance optimize them through intelligent technologies such as neural networks, machine learning, support vector machines. These addressed common issues low correlation between characteristic parameters faults, ambiguous descriptions, complexity feature analysis. However, due structures uncertainties operating environments, collection becomes highly intricate. Researchers further refined algorithms values based on diagnostic transformers. goal is improve speed, mitigate impact measurement noise, advance adaptability artificial intelligence technology field On other hand, excellent multi-parameter capability more suitable techniques that involve fusion multiple information sources. Through powerful data acquisition, processing, decision-making capabilities provided algorithms, it can comprehensively analyze non-electrical oil characteristics, signals, temperature, along with electrical like short-circuit reactance load ratio. Moreover, automatically inherent relationship faults quantities provide suggestions. This technique pivotal ensuring safety network security, emerging prominent direction research.
Язык: Английский
Процитировано
4Energy, Год журнала: 2025, Номер unknown, С. 134761 - 134761
Опубликована: Фев. 1, 2025
Язык: Английский
Процитировано
0Measurement, Год журнала: 2025, Номер unknown, С. 117056 - 117056
Опубликована: Фев. 1, 2025
Язык: Английский
Процитировано
0Data Science and Management, Год журнала: 2025, Номер unknown
Опубликована: Фев. 1, 2025
Язык: Английский
Процитировано
0Scientific Reports, Год журнала: 2025, Номер 15(1)
Опубликована: Март 1, 2025
The assessment of apple quality is pivotal in agricultural production management, and ripeness a key determinant quality. This paper proposes an approach for assessing from both structured unstructured observation data, i.e., text images. For support vector regression (SVR) models optimized using the Whale Optimization Algorithm (WOA), Grey Wolf Optimizer (GWO), Sparrow Search (SSA) were utilized to predict ripeness, with WOA-optimized SVR demonstrating exceptional generalization capabilities. image Enhanced-YOLOv8+, modified YOLOv8 architecture integrating Detect Efficient Head (DEH) Channel Attention (ECA) mechanism, was employed precise localization identification. synergistic application these methods resulted significant improvement prediction accuracy. These approaches provide robust framework deepen understanding relationship between maturity observed indicators, facilitating more informed decision-making postharvest management.
Язык: Английский
Процитировано
0Electric Power Systems Research, Год журнала: 2025, Номер 245, С. 111583 - 111583
Опубликована: Март 11, 2025
Язык: Английский
Процитировано
0Research Square (Research Square), Год журнала: 2025, Номер unknown
Опубликована: Март 24, 2025
Язык: Английский
Процитировано
0Sleep and Biological Rhythms, Год журнала: 2025, Номер unknown
Опубликована: Апрель 10, 2025
Язык: Английский
Процитировано
0Energy Informatics, Год журнала: 2025, Номер 8(1)
Опубликована: Апрель 22, 2025
Язык: Английский
Процитировано
0AIP Advances, Год журнала: 2024, Номер 14(5)
Опубликована: Май 1, 2024
Support Vector Machines (SVMs) have achieved significant success in the field of power transformer fault diagnosis. However, challenges such as determining SVM hyperparameters and their suitability for binary classification still exist. This paper proposes a novel method diagnosis, called ECOC-WSO-SVM, which utilizes White Shark Optimizer (WSO) error correcting output codes to optimize SVMs. First, t-distributed Stochastic Neighbor Embedding (t-SNE) is employed reduce dimensionality Dissolved Gas Analysis (DGA) features constructed using correlation ratio method, from 26 dimensions. In addition, effectively solve SVMs, multi-strategy fusion proposed improve WSO, incorporating tent chaos initialization, elite opposite learning, selection strategies, forming TEWSO, its superior optimization performance validated IEEE CEC2021 test functions. Furthermore, address limitations SVMs classifier, an code introduced, thus constructing multi-class model. Finally, diagnostic ECOC-TEWSO-SVM model real-world data. Results demonstrate that exhibits best compared traditional models those literature, thereby proving significance effectiveness
Язык: Английский
Процитировано
3