Industrial Crops and Products, Год журнала: 2024, Номер 222, С. 119855 - 119855
Опубликована: Окт. 19, 2024
Язык: Английский
Industrial Crops and Products, Год журнала: 2024, Номер 222, С. 119855 - 119855
Опубликована: Окт. 19, 2024
Язык: Английский
Heliyon, Год журнала: 2024, Номер 10(22), С. e40265 - e40265
Опубликована: Ноя. 1, 2024
Due to the spread of antibiotic resistance, global attention is focused on its inhibition and expansion effective medicinal compounds. The novel functional properties peptides have opened up new horizons in personalized medicine. With artificial intelligence methods combined with therapeutic peptide products, pharmaceuticals biotechnology advance drug development rapidly reduce costs. Short-chain inhibit a wide range pathogens great potential for targeting diseases. To address challenges synthesis sustainability, methods, namely machine learning, must be integrated into their production. Learning can use complicated computations select active toxic compounds metabolic activity. Through this comprehensive review, we investigated method as tool finding peptide-based drugs providing more accurate analysis through introduction predictable databases selection development.
Язык: Английский
Процитировано
8Trends in Food Science & Technology, Год журнала: 2025, Номер unknown, С. 104887 - 104887
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
1Food Chemistry, Год журнала: 2025, Номер unknown, С. 144047 - 144047
Опубликована: Март 1, 2025
Язык: Английский
Процитировано
0Biomolecules, Год журнала: 2025, Номер 15(4), С. 524 - 524
Опубликована: Апрель 3, 2025
Molecular modelling is a vital tool in the discovery and characterisation of bioactive peptides, providing insights into their structural properties interactions with biological targets. Many models predicting peptide function or structure rely on intrinsic properties, including influence amino acid composition, sequence, chain length, which impact stability, folding, aggregation, target interaction. Homology predicts structures based known templates. Peptide–protein can be explored using molecular docking techniques, but there are challenges related to inherent flexibility addressed by more computationally intensive approaches that consider movement over time, called dynamics (MD). Virtual screening many usually against single target, enables rapid identification potential peptides from large libraries, typically approaches. The integration artificial intelligence (AI) has transformed leveraging amounts data. AlphaFold general protein prediction deep learning greatly improved predictions conformations interactions, addition estimates model accuracy at each residue guide interpretation. Peptide being further enhanced Protein Language Models (PLMs), deep-learning-derived statistical learn computer representations useful identify fundamental patterns proteins. Recent methodological developments discussed context canonical as well those modifications cyclisations. In designing therapeutics, main outstanding challenge for these methods incorporation diverse non-canonical acids
Язык: Английский
Процитировано
0Current Microbiology, Год журнала: 2024, Номер 81(10)
Опубликована: Сен. 6, 2024
Язык: Английский
Процитировано
2RSC Medicinal Chemistry, Год журнала: 2024, Номер 15(6), С. 2030 - 2036
Опубликована: Янв. 1, 2024
The large language models GPT-3 and GTP-3.5 were challenged to predict the activity hemolysis of antimicrobial peptides from their sequence compared recurrent neural networks support vector machines.
Язык: Английский
Процитировано
1Industrial Crops and Products, Год журнала: 2024, Номер 222, С. 119855 - 119855
Опубликована: Окт. 19, 2024
Язык: Английский
Процитировано
0