Bringing bioactive peptides into drug discovery: Challenges and opportunities for medicinal plants DOI
Shweta Thakur, Ashwani Punia,

Satyakam

и другие.

Industrial Crops and Products, Год журнала: 2024, Номер 222, С. 119855 - 119855

Опубликована: Окт. 19, 2024

Язык: Английский

Therapeutic Peptide Development Revolutionized: Harnessing the Power of Artificial Intelligence for Drug Discovery DOI Creative Commons
Samaneh Hashemi,

Parisa Vosough,

Saeed Taghizadeh

и другие.

Heliyon, Год журнала: 2024, Номер 10(22), С. e40265 - e40265

Опубликована: Ноя. 1, 2024

Due to the spread of antibiotic resistance, global attention is focused on its inhibition and expansion effective medicinal compounds. The novel functional properties peptides have opened up new horizons in personalized medicine. With artificial intelligence methods combined with therapeutic peptide products, pharmaceuticals biotechnology advance drug development rapidly reduce costs. Short-chain inhibit a wide range pathogens great potential for targeting diseases. To address challenges synthesis sustainability, methods, namely machine learning, must be integrated into their production. Learning can use complicated computations select active toxic compounds metabolic activity. Through this comprehensive review, we investigated method as tool finding peptide-based drugs providing more accurate analysis through introduction predictable databases selection development.

Язык: Английский

Процитировано

8

Harnessing AI for Enhanced Screening of Antimicrobial Bioactive Compounds in Food Safety and Preservation DOI
Mengyue Zhou, Juliana Pinto de Lima, Hefei Zhao

и другие.

Trends in Food Science & Technology, Год журнала: 2025, Номер unknown, С. 104887 - 104887

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

1

Exploring the impact of bioactive peptides from fermented Milk proteins: A review with emphasis on health implications and artificial intelligence integration DOI
Hosam M. Habib, Rania Ismail, Mahmoud Agami

и другие.

Food Chemistry, Год журнала: 2025, Номер unknown, С. 144047 - 144047

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

0

Molecular Modelling in Bioactive Peptide Discovery and Characterisation DOI Creative Commons
Clement Agoni, Raúl Fernández-Díaz, Patrick Brendan Timmons

и другие.

Biomolecules, Год журнала: 2025, Номер 15(4), С. 524 - 524

Опубликована: Апрель 3, 2025

Molecular modelling is a vital tool in the discovery and characterisation of bioactive peptides, providing insights into their structural properties interactions with biological targets. Many models predicting peptide function or structure rely on intrinsic properties, including influence amino acid composition, sequence, chain length, which impact stability, folding, aggregation, target interaction. Homology predicts structures based known templates. Peptide–protein can be explored using molecular docking techniques, but there are challenges related to inherent flexibility addressed by more computationally intensive approaches that consider movement over time, called dynamics (MD). Virtual screening many usually against single target, enables rapid identification potential peptides from large libraries, typically approaches. The integration artificial intelligence (AI) has transformed leveraging amounts data. AlphaFold general protein prediction deep learning greatly improved predictions conformations interactions, addition estimates model accuracy at each residue guide interpretation. Peptide being further enhanced Protein Language Models (PLMs), deep-learning-derived statistical learn computer representations useful identify fundamental patterns proteins. Recent methodological developments discussed context canonical as well those modifications cyclisations. In designing therapeutics, main outstanding challenge for these methods incorporation diverse non-canonical acids

Язык: Английский

Процитировано

0

Immunomodulation in Non-traditional Therapies for Methicillin-resistant Staphylococcus aureus (MRSA) Management DOI

Suthi Subbarayudu,

S. Karthick Raja Namasivayam,

Jesu Arockiaraj

и другие.

Current Microbiology, Год журнала: 2024, Номер 81(10)

Опубликована: Сен. 6, 2024

Язык: Английский

Процитировано

2

Can large language models predict antimicrobial peptide activity and toxicity? DOI Creative Commons
Markus Orsi, Jean‐Louis Reymond

RSC Medicinal Chemistry, Год журнала: 2024, Номер 15(6), С. 2030 - 2036

Опубликована: Янв. 1, 2024

The large language models GPT-3 and GTP-3.5 were challenged to predict the activity hemolysis of antimicrobial peptides from their sequence compared recurrent neural networks support vector machines.

Язык: Английский

Процитировано

1

Bringing bioactive peptides into drug discovery: Challenges and opportunities for medicinal plants DOI
Shweta Thakur, Ashwani Punia,

Satyakam

и другие.

Industrial Crops and Products, Год журнала: 2024, Номер 222, С. 119855 - 119855

Опубликована: Окт. 19, 2024

Язык: Английский

Процитировано

0