
Environmental Challenges, Год журнала: 2024, Номер unknown, С. 101074 - 101074
Опубликована: Дек. 1, 2024
Язык: Английский
Environmental Challenges, Год журнала: 2024, Номер unknown, С. 101074 - 101074
Опубликована: Дек. 1, 2024
Язык: Английский
Scientific Reports, Год журнала: 2025, Номер 15(1)
Опубликована: Фев. 27, 2025
Urban expansion and changes in land use/land cover (LULC) have intensified recent decades due to human activity, influencing ecological developmental landscapes. This study investigated historical projected LULC urban growth patterns the districts of Multan Sargodha, Pakistan, using Landsat satellite imagery, cloud computing, predictive modelling from 1990 2030. The analysis images was grouped into four time periods (1990–2000, 2000–2010, 2010–2020, 2020–2030). Google Earth Engine cloud-based platform facilitated classification 5 ETM (1990, 2000, 2010) 8 OLI (2020) Random Forest model. A simulation model integrating Cellular Automata an Artificial Neural Network Multilayer Perceptron MOLUSCE plugin QGIS employed forecast resulting maps showed consistently high accuracy levels exceeding 92% for both across all periods. revealed that Multan's built-up area increased 240.56 km2 (6.58%) 440.30 (12.04%) 2020, while Sargodha experienced more dramatic 730.91 (12.69%) 1,029.07 (17.83%). Vegetation remained dominant but significant variations, particularly peri-urban areas. By 2030, is stabilize at 433.22 km2, primarily expanding southeastern direction. expected reach 1,404.97 showing balanced multi-directional toward northeast north. presents effective analytical method processing, GIS, change modeling evaluate spatiotemporal changes. approach successfully identified main transformations trends areas highlighting potential urbanization zones where opportunities exist developing planned managed settlements.
Язык: Английский
Процитировано
0Earth Systems and Environment, Год журнала: 2025, Номер unknown
Опубликована: Март 8, 2025
Язык: Английский
Процитировано
0GeoJournal, Год журнала: 2025, Номер 90(2)
Опубликована: Март 14, 2025
Язык: Английский
Процитировано
0Scientific Reports, Год журнала: 2025, Номер 15(1)
Опубликована: Март 18, 2025
Tourism activities are changing the global landscape pattern. This study attempted to estimate changes in Land Use Cover (LULC) and Surface Temperature (LST) District Buner Shangla, Khyber Pakhtunkhwa (KPK), Pakistan, specifically its tourist spots. Using remote sensing data from satellites (1990–2020) future projections (2035–2050), we applied Artificial Neural Network (ANN) Cellular Automata Markov (CA-Markov) models examine past LULC LST dynamics across two districts including four major spots (Shangla Top as spot one (TS1), Bar Puran (TS2), Shahida Sar (TS3), Daggar (TS4). The classification for whole area indicates that built-up agricultural areas increased with a net change of +0.8% +3.2% Shangla districts, respectively. highest mean was found areas. simulation results indicate an expansion 4.5% 5.8% total areas, above 31 °C will cover 76% 88% 2035 2050, conversion is driven by tourism activities, causing urban heat island effects (UHIs), environmental degradation. analysis shows at while (28 °C) (2035–2050) show TS4 would have (5.67%), (31 65.23 82.20%. These findings provide essential understandings developing long-term policies meant moderate impact region.
Язык: Английский
Процитировано
0Deleted Journal, Год журнала: 2025, Номер 2(1)
Опубликована: Март 18, 2025
Язык: Английский
Процитировано
0GeoJournal, Год журнала: 2025, Номер 90(2)
Опубликована: Март 21, 2025
Язык: Английский
Процитировано
0Solid Earth Sciences, Год журнала: 2025, Номер 10(2), С. 100239 - 100239
Опубликована: Апрель 8, 2025
Язык: Английский
Процитировано
0GeoJournal, Год журнала: 2025, Номер 90(2)
Опубликована: Апрель 9, 2025
Язык: Английский
Процитировано
0Discover Sustainability, Год журнала: 2025, Номер 6(1)
Опубликована: Апрель 10, 2025
Язык: Английский
Процитировано
0GeoJournal, Год журнала: 2025, Номер 90(2)
Опубликована: Апрель 10, 2025
Язык: Английский
Процитировано
0