
Research Square (Research Square), Год журнала: 2024, Номер unknown
Опубликована: Ноя. 7, 2024
Язык: Английский
Research Square (Research Square), Год журнала: 2024, Номер unknown
Опубликована: Ноя. 7, 2024
Язык: Английский
Annals of Operations Research, Год журнала: 2025, Номер unknown
Опубликована: Апрель 17, 2025
Язык: Английский
Процитировано
0Electronics, Год журнала: 2024, Номер 13(18), С. 3621 - 3621
Опубликована: Сен. 12, 2024
Due to high probability of blade faults, bearing sensor and communication faults in pitch systems during the long-term operation wind turbine components, complex environment which increases uncertainty fault types, this paper proposes a diagnosis method for components based on an Improved Dung Beetle Optimization (IDBO) algorithm optimize Support Vector Machine (SVM). Firstly, Halton sequence is initially employed populate population, effectively mitigating issue local optima. Secondly, subtraction averaging optimization strategy introduced accelerate dung beetle solving problems improve its global ability. Finally, incorporating smooth development variation helps data quality accuracy model. The experimental results indicate that IDBO-optimized SVM (IDBO-SVM) achieves 96.7% rate components. With proposed IDBO-SVM method, more accurate stable, practical application excellent.
Язык: Английский
Процитировано
1Research Square (Research Square), Год журнала: 2024, Номер unknown
Опубликована: Ноя. 7, 2024
Язык: Английский
Процитировано
0