Multiscale and Multidisciplinary Modeling Experiments and Design, Год журнала: 2024, Номер 8(1)
Опубликована: Дек. 29, 2024
Язык: Английский
Multiscale and Multidisciplinary Modeling Experiments and Design, Год журнала: 2024, Номер 8(1)
Опубликована: Дек. 29, 2024
Язык: Английский
Scientific Reports, Год журнала: 2025, Номер 15(1)
Опубликована: Март 6, 2025
Язык: Английский
Процитировано
1Scientific Reports, Год журнала: 2025, Номер 15(1)
Опубликована: Март 8, 2025
The traditional evaluation of compressive strength through repeated experimental works can be resource-intensive, time-consuming, and environmentally taxing. Leveraging advanced machine learning (ML) offers a faster, cheaper, more sustainable alternative for evaluating optimizing concrete properties, particularly materials incorporating industrial wastes steel fibers. In this research work, total 166 records were collected partitioned into training set (130 = 80%) validation (36 20%) in line with the requirements data partitioning sorting optimal model performance. These entries represented ten (10) components fiber reinforced such as C, W, FAg, CAg, PL, SF, FA, Vf, FbL, FbD, which applied input variables Cs, was target. Advanced techniques to (Cs) "Semi-supervised classifier (Kstar)", "M5 (M5Rules), "Elastic net (ElasticNet), "Correlated Nystrom Views (XNV)", "Decision Table (DT)". All models created using 2024 "Weka Data Mining" software version 3.8.6. Also, accuracies developed evaluated by comparing sum squared error (SSE), mean absolute (MAE), (MSE), root (RMSE), Error (%), Accuracy (%) coefficient determination (R2), correlation (R), willmott index (WI), Nash–Sutcliffe efficiency (NSE), Kling–Gupta (KGE) symmetric percentage (SMAPE) between predicted calculated values output. At end, has been found transformative approach that enhances efficiency, cost-effectiveness, sustainability wastes-based fiber. Among reviewed, Kstar DT emerge most practical achieving precise results. Their adoption significantly reduce environmental impacts promote use by-products construction. sensitivity on produced 36% from 71% 70% 60% 34% 5% 33% 67% 61% 61%. Fiber Volume Fraction (Vf) (67%) high suggests content greatly crack resistance tensile strength. Steel Orientation (61%) indicates importance alignment distributing stresses enhancing structural integrity.
Язык: Английский
Процитировано
0Discover Sustainability, Год журнала: 2025, Номер 6(1)
Опубликована: Апрель 21, 2025
Язык: Английский
Процитировано
0Iranian Journal of Science and Technology Transactions of Civil Engineering, Год журнала: 2025, Номер unknown
Опубликована: Апрель 23, 2025
Язык: Английский
Процитировано
0Innovative Infrastructure Solutions, Год журнала: 2025, Номер 10(5)
Опубликована: Апрель 26, 2025
Язык: Английский
Процитировано
0Scientific Reports, Год журнала: 2024, Номер 14(1)
Опубликована: Дек. 30, 2024
The present research incorporates five AI methods to enhance and forecast the characteristics of building envelopes. In this study, Response Surface Methodology (RSM), Support Vector Machine (SVM), Gradient Boosting (GB), Artificial Neural Networks (ANN), Random Forest (RF) machine learning method for optimization predicting mechanical properties natural fiber addition incorporated with construction demolition waste (CDW) as replacement Fine Aggregate in Paver blocks. factors considered were cement content, fine aggregate, CDW, coconut fibre, while resulting measure was machinal paver Furthermore, techniques precision extensively evaluated. outcomes from both training testing phases demonstrated strong predictive power RSM, SVM, GB, ANN, RF a criterion used Root Mean square error (RMSE), (MSE), Absolute Error (MAE) correlation coefficient (R). Moreover, results that GB ANN provide enhanced performance comparison SVM determining factors.
Язык: Английский
Процитировано
2Asian Journal of Civil Engineering, Год журнала: 2024, Номер unknown
Опубликована: Дек. 19, 2024
Язык: Английский
Процитировано
0Multiscale and Multidisciplinary Modeling Experiments and Design, Год журнала: 2024, Номер 8(1)
Опубликована: Дек. 29, 2024
Язык: Английский
Процитировано
0