Computers and Electronics in Agriculture, Год журнала: 2025, Номер 235, С. 110369 - 110369
Опубликована: Апрель 9, 2025
Язык: Английский
Computers and Electronics in Agriculture, Год журнала: 2025, Номер 235, С. 110369 - 110369
Опубликована: Апрель 9, 2025
Язык: Английский
Electronics, Год журнала: 2025, Номер 14(5), С. 969 - 969
Опубликована: Фев. 28, 2025
The shortage of medical personnel and the busy lives modern people have increased desire for self-diagnosis diseases, latest large-scale language models image recognition technologies potential to meet this demand. In particular, skin-related diseases are one areas where symptoms visually distinguishable, making care possible. paper, we propose a system that classifies through images skin combines them with individual conditions such as age, type, gender self-diagnosis. First, design deep learning model-based disease classifier can classify six types using HAM10000 dataset generate prompts by combining personal information input. By utilizing Generative Pre-trained Transformer (GPT) model, generates personalized methods based on these prompts. We measured accuracy classification model proposed validated effectiveness method user evaluations.
Язык: Английский
Процитировано
0Expert Systems with Applications, Год журнала: 2025, Номер unknown, С. 127163 - 127163
Опубликована: Март 1, 2025
Процитировано
0Computers and Electronics in Agriculture, Год журнала: 2025, Номер 235, С. 110369 - 110369
Опубликована: Апрель 9, 2025
Язык: Английский
Процитировано
0