Atmospheric Environment, Год журнала: 2024, Номер unknown, С. 120854 - 120854
Опубликована: Окт. 1, 2024
Язык: Английский
Atmospheric Environment, Год журнала: 2024, Номер unknown, С. 120854 - 120854
Опубликована: Окт. 1, 2024
Язык: Английский
Environmental Pollution, Год журнала: 2024, Номер 346, С. 123662 - 123662
Опубликована: Фев. 26, 2024
Язык: Английский
Процитировано
8The Science of The Total Environment, Год журнала: 2024, Номер 946, С. 174027 - 174027
Опубликована: Июнь 19, 2024
The global health implications of fine particulate matter (PM
Язык: Английский
Процитировано
6Atmospheric Research, Год журнала: 2024, Номер 308, С. 107548 - 107548
Опубликована: Окт. 1, 2024
Язык: Английский
Процитировано
4Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
0Environment International, Год журнала: 2025, Номер unknown, С. 109394 - 109394
Опубликована: Март 1, 2025
Atmospheric particulate nitrate (pNO3-), a crucial component of fine matter, significantly contributes to haze pollution. The formation pNO3- is driven by multiple factors including meteorology, emissions, and atmospheric chemistry. Understanding the key drivers developing an accurate physically meaningful method for timely assessment direct causes pollution are essential. In this study, we propose multi-module data-driven integrated framework that incorporates improves four distinct machine learning modules. This enhances physical interpretability statistical outcomes driving pNO3-, quantifies impacts on reveals emission reduction trends. Our findings show meteorology emissions affect 35.3 % 64.7 %, respectively, while chemistry (48.0 %) humidity (17.1 its formation. Photochemistry promotes in summer, whereas liquid-phase reactions dominate winter at higher levels (>60 %). industry source (IS) (14.3 %), combustion (CS) (12.8 transportation (TS) (11.8 main sources. primary transformation NOx emitted from CS TS more sensitive changes meteorological conditions, controlling has greater benefits reduce pNO3-. proposed could provide reliable identifying different events, supporting formulation control measures.
Язык: Английский
Процитировано
0Atmospheric Research, Год журнала: 2025, Номер 323, С. 108167 - 108167
Опубликована: Апрель 23, 2025
Язык: Английский
Процитировано
0Journal of Hazardous Materials, Год журнала: 2025, Номер 494, С. 138584 - 138584
Опубликована: Май 10, 2025
Язык: Английский
Процитировано
0The Science of The Total Environment, Год журнала: 2024, Номер 949, С. 175093 - 175093
Опубликована: Июль 29, 2024
Язык: Английский
Процитировано
3Journal of Environmental Management, Год журнала: 2024, Номер 370, С. 122615 - 122615
Опубликована: Сен. 24, 2024
Язык: Английский
Процитировано
3Discover Artificial Intelligence, Год журнала: 2024, Номер 4(1)
Опубликована: Ноя. 3, 2024
The atmosphere's fine articulate Matter (PM2.5) poses various health-related risks. Even though multiple efforts have been made to lower the emissions of these substances, mortality rate is continuously increasing, requiring immediate inclination scientific community towards design and development advanced predictive models. Conventional statistical approaches become dormant due their limitations in capturing innate relationships between pollutants, particularly for predicting PM2.5 concentrations. In contrast, machine deep learning techniques shown great potential forecasting air quality, providing more accuracy than its predecessor techniques. present study investigates utilization hybrid by integrating models with improve prediction capabilities concentration. It uses datasets from World Air Quality Index (WAQI) State Global (SOGA) analyze performance on both daily annual data, respectively. This ensures model's effectiveness a diversified dataset. implements Random Forest (RF), Polynomial Regression (PR), XGBoost, Extra Tree Regressor (ETR) coupled Fully Connected Neural Network (FCNN), Long Short-Term Memory (LSTM), Bi-directional LSTM (Bi-LSTM) obtaining optimized results. Finally, after thorough investigation, PR model FCNN (PR-FCNN) found be best improved R-squared (R2) values, portraying concentration accurately. Based experimentation, preset recommends implementing approaches, offering better especially PM2.5.
Язык: Английский
Процитировано
1