Stochastic Resonance in HfO$_{\text{2}}$-Based Memristors: Impact of External Noise on the Binary STDP Protocol DOI Creative Commons
E. Salvador, R. Rodrı́guez, E. Miranda

и другие.

IEEE Transactions on Electron Devices, Год журнала: 2024, Номер 71(9), С. 5761 - 5766

Опубликована: Авг. 9, 2024

Язык: Английский

2D materials-memristive devices nexus: From status quo to Impending applications DOI Creative Commons
Muhammad Muqeet Rehman, Yarjan Abdul Samad, Jahan Zeb Gul

и другие.

Progress in Materials Science, Год журнала: 2025, Номер unknown, С. 101471 - 101471

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

3

Photon-assisted stochastic resonance in nanojunctions DOI
Michael Ridley,

Leo Bellassai,

Michael Moskalets

и другие.

Physical review. B./Physical review. B, Год журнала: 2025, Номер 111(9)

Опубликована: Март 24, 2025

Язык: Английский

Процитировано

0

Nanoelectronics-enabled reservoir computing hardware for real-time robotic controls DOI
Mingze Chen,

Xiaoqiu An,

Seung Jun Ki

и другие.

Science Advances, Год журнала: 2025, Номер 11(13)

Опубликована: Март 26, 2025

Traditional robotic vehicle control algorithms, implemented on digital devices with firmware, result in high power consumption and system complexity. Advanced systems based different device physics are essential for the advancement of sophisticated vehicles miniature mobile robots. Here, we present a nanoelectronics-enabled analog mimicking conventional controllers’ dynamic responses real-time controls, substantially reducing training cost, consumption, footprint. This uses reservoir computing network interconnected memristive channels made from layered semiconductors. The network’s nonlinear switching short-term memory characteristics effectively map input sensory signals to high-dimensional data spaces, enabling generation motor simply trained readout layer. approach minimizes software analog-to-digital conversions, enhancing energy resource efficiency. We demonstrate this two tasks: rover target tracking drone lever balancing, achieving similar performance traditional controllers ~10-microwatt consumption. work paves way ultralow-power edge systems.

Язык: Английский

Процитировано

0

Attaining hardware-efficient inference in memristor-based transformer accelerator via network redesign DOI

Junzhe Xu,

Haoqin Hong, Yue Zhou

и другие.

Neurocomputing, Год журнала: 2025, Номер unknown, С. 130517 - 130517

Опубликована: Май 1, 2025

Язык: Английский

Процитировано

0

Engineering TiO₂ memristors: A material-centric review DOI
Shilpa Shivaram, S. K. Suresh Babu, D. Paul

и другие.

Journal of materials research/Pratt's guide to venture capital sources, Год журнала: 2025, Номер unknown

Опубликована: Июнь 3, 2025

Язык: Английский

Процитировано

0

A Simple, Robust, and Versatile MATLAB Formulation of the Dynamic Memdiode Model for Bipolar-Type Resistive Random Access Memory Devices DOI Creative Commons
E. Salvador, R. Rodrı́guez, E. Miranda

и другие.

Journal of Low Power Electronics and Applications, Год журнала: 2024, Номер 14(2), С. 30 - 30

Опубликована: Май 28, 2024

Modeling in an emerging technology like RRAM devices is one of the pivotal concerns for its development. In current bibliography, most models face difficulties implementing or simulating unconventional scenarios, particularly when dealing with complex input signals. addition, circuit simulators Spice require long running times high-resolution results because their internal mathematical implementation. this work, a fast, simple, robust, and versatile model built MATLAB presented. The proposed recursive discretized version dynamic memdiode (DMM) bipolar-type resistive switching originally implemented LTspice. DMM basically consists two coupled equations: (non-linear generator) second memory state device (time-dependent differential equation). This work presents easy-to-use tool researchers to reproduce experimental behavior predict outcome from non-trivial experiments. Three study cases are reported, aimed at capturing different phenomenologies: frequency effect study, cycle-to-cycle variability fit, stochastic resonance impact analysis.

Язык: Английский

Процитировано

1

Investigation of in vitro neuronal activity processing using a CMOS-integrated ZrO2(Y)-based memristive crossbar DOI
M. N. Koryazhkina, Albina Lebedeva,

Darina D. Pakhomova

и другие.

Chaos Solitons & Fractals, Год журнала: 2024, Номер 191, С. 115959 - 115959

Опубликована: Дек. 28, 2024

Язык: Английский

Процитировано

1

Stochastic Resonance in HfO$_{\text{2}}$-Based Memristors: Impact of External Noise on the Binary STDP Protocol DOI Creative Commons
E. Salvador, R. Rodrı́guez, E. Miranda

и другие.

IEEE Transactions on Electron Devices, Год журнала: 2024, Номер 71(9), С. 5761 - 5766

Опубликована: Авг. 9, 2024

Язык: Английский

Процитировано

0