AAPS PharmSciTech, Год журнала: 2024, Номер 25(8)
Опубликована: Ноя. 27, 2024
Язык: Английский
AAPS PharmSciTech, Год журнала: 2024, Номер 25(8)
Опубликована: Ноя. 27, 2024
Язык: Английский
Small, Год журнала: 2024, Номер unknown
Опубликована: Дек. 15, 2024
Extracellular vesicles (EVs) play a crucial role in the occurrence and progression of cancer. The efficient isolation analysis EVs for early cancer diagnosis prognosis have gained significant attention. In this study, first time, rapid visually detectable method termed freeze-thaw-induced floating patterns gold nanoparticles (FTFPA) is proposed, which surpasses current state-of-the-art technologies by achieving 100 fold improvement limit detection EVs. Notably, it allows multi-dimensional visualizations through site-specific oligonucleotide incorporation. This capability empowers FTFPA to accurately identify derived from subtypes breast cancers with artificial intelligence algorithms. Intriguingly, learning freezing-thawing-microstructures random forest algorithm not only able distinguish their original cell lines (with an accuracy 95.56%), but also succeed processing clinical samples (n = 156) healthy donors, lump (Luminal A, Triple-negative cancer, Luminal B) 83.33%. Therefore, AI-empowered micro-visualization establishes precise point-of-care platform that applicable both fundamental research settings.
Язык: Английский
Процитировано
4Biochimica et Biophysica Acta (BBA) - Reviews on Cancer, Год журнала: 2024, Номер unknown, С. 189188 - 189188
Опубликована: Сен. 1, 2024
Язык: Английский
Процитировано
2AAPS PharmSciTech, Год журнала: 2024, Номер 25(8)
Опубликована: Ноя. 27, 2024
Язык: Английский
Процитировано
1