Classification of MDD patients with using network measures DOI
Andrey Andreev

Опубликована: Сен. 18, 2023

Major depressive disorder (MDD) is a common and debilitating psychiatric illness that affects millions of people worldwide. Despite advancements in the understanding its underlying mechanisms, diagnosis treatment MDD remain significant challenge. In this paper, we present an approach for classification patients with based on their functional network measures. Our results demonstrate simple Linear Discriminant Analysis achieves high accuracy (83 %) two cases: when use all network's couplings or only strongest ones.

Язык: Английский

Neural Correlates of Social Touch Processing: An fMRI Study on Brain Functional Connectivity DOI Creative Commons
Vladimir Khorev, Semen Kurkin, L. A. Mayorova

и другие.

Journal of Integrative Neuroscience, Год журнала: 2025, Номер 24(1)

Опубликована: Янв. 20, 2025

Background: The significance of tactile stimulation in human social development and personal interaction is well documented; however, the underlying cerebral processes remain under-researched. This study employed functional magnetic resonance imaging (fMRI) to investigate neural correlates touch processing, with a particular focus on connectivity associated aftereffects touch. Methods: A total 27 experimental subjects were recruited for study, all whom underwent 5-minute calf foot massage prior undergoing resting-state fMRI. Additionally, 11 healthy controls participated solely fMRI recording. network analysis was conducted examine alterations connections between different brain regions following massage. Results: findings indicated involvement discrete networks processing touch, notable discrepancies observed control groups. revealed that group exhibited higher degree within subnetwork comprising 25 23 nodes than intervention. showed hypoactivation this left anterior pulvinar thalamus right pregenual cingulate cortex, which serve as key hubs subnetwork, clustering increased node strength group. Relatively small unequal sample sizes are limitations may affect generalizability results. Conclusions: These elucidate underpinnings experiences their potential impact behavior emotional state. Gaining insight into these mechanisms could inform therapeutic approaches utilize mitigate stress enhance mental health. From practical standpoint, our results have significant implications sensory strategies patients prolonged disorders consciousness, loss, autism spectrum disorders, or limited access upper extremities.

Язык: Английский

Процитировано

0

Disruptions in segregation mechanisms in fMRI-based brain functional network predict the major depressive disorder condition DOI
Vladimir Khorev, Semen Kurkin,

Gabriella Zlateva

и другие.

Chaos Solitons & Fractals, Год журнала: 2024, Номер 188, С. 115566 - 115566

Опубликована: Окт. 1, 2024

Язык: Английский

Процитировано

3

Abnormal changes of dynamic topological characteristics in patients with major depressive disorder DOI
Yue Zhou,

Yihui Zhu,

Hongting Ye

и другие.

Journal of Affective Disorders, Год журнала: 2023, Номер 345, С. 349 - 357

Опубликована: Окт. 25, 2023

Язык: Английский

Процитировано

8

Characteristics of brain functional networks specific for different types of tactile perception DOI
Semen Kurkin, Vladimir Khorev, Ivan V. Skorokhodov

и другие.

The European Physical Journal Special Topics, Год журнала: 2023, Номер 233(3), С. 499 - 504

Опубликована: Дек. 1, 2023

Язык: Английский

Процитировано

5

Methodology of collection, recording and markup of biophysical multimodal data in the study of human psychoemotional states DOI Creative Commons
Natalia Shusharina

Izvestiya of Saratov University Physics, Год журнала: 2024, Номер 24(3), С. 239 - 249

Опубликована: Авг. 22, 2024

Аннотация.Цель настоящей работы -проанализировать требования к методике сбора биофизических данных на основе открытых наборов определения психоэмоционального состояния, аппаратному и программному обеспечению для их первичной обработки.Сформулировать методику формирования мультимодальных данных, пригодную исследования психических состояний изменений, в том числе с использованием алгоритмов машинного обучения.Описать возможный метод реализации этих требований аппаратно-программных комплексах.Методы.Для анализа основных особенностей характеризующих психические были выбраны открытые наборы пациентов депрессивными расстройствами.Основные сформулированы изучения публикаций об особенностях применения диагностики депрессивных расстройств.Результатом являются набор мультимодальным данным биопотенциалов психоэмоциональных состояний, методика функциональная концепция аппаратно-программного комплекса регистрации, синхронизации записи аннотированном виде.Заключение.На примере депрессивного расстройства показана целесообразность возможность регистрации мультимодальных, синхронизированных между собой аннотированных о психоэмоциональном состоянии испытуемого исследовательских, диагностических целей качестве обучающей выборки алгоритмах обучения.Предложенная программно-аппаратного позволяют

Язык: Русский

Процитировано

0

Recurrency time entropy of brain wave rhythms as an indicator of performance on visual search tasks in schoolchildren DOI
Artem Badarin,

Nikita Brusinskii,

Vadim Grubov

и другие.

The European Physical Journal Special Topics, Год журнала: 2024, Номер unknown

Опубликована: Окт. 2, 2024

Язык: Английский

Процитировано

0

Intermediary-guided windowed attention Aggregation network for fine-grained characterization of Major Depressive Disorder fMRI DOI
Xue Ming Yuan,

Maozhou Chen,

Peng Ding

и другие.

Biomedical Signal Processing and Control, Год журнала: 2024, Номер 100, С. 107166 - 107166

Опубликована: Ноя. 6, 2024

Язык: Английский

Процитировано

0

Regime switching in coupled nonlinear systems: Sources, prediction, and control—Minireview and perspective on the Focus Issue DOI
Igor Franović, Sebastian Eydam, Deniz Eroglu

и другие.

Chaos An Interdisciplinary Journal of Nonlinear Science, Год журнала: 2024, Номер 34(12)

Опубликована: Дек. 1, 2024

Regime switching, the process where complex systems undergo transitions between qualitatively different dynamical states due to changes in their conditions, is a widespread phenomenon, from climate and ocean circulation, ecosystems, power grids, brain. Capturing mechanisms that give rise isolated or sequential switching dynamics, as well developing generic robust methods for forecasting, detecting, controlling them essential maintaining optimal performance preventing dysfunctions even collapses systems. This Focus Issue provides new insights into regime covering recent advances theoretical analysis harnessing reduction approaches, data-driven detection non-feedback control strategies. Some of key challenges addressed include development techniques coupled stochastic adaptive systems, influence multiple timescale dynamics on chaotic structures cyclic patterns forced role saddles heteroclinic cycles pattern oscillators. The contributions further highlight deep learning applications predicting grid failures, use blinking networks enhance synchronization, creating strategies epidemic spreading, suppress epileptic seizures. These developments are intended catalyze dialog branches complexity.

Язык: Английский

Процитировано

0

Classification of MDD patients with using network measures DOI
Andrey Andreev

Опубликована: Сен. 18, 2023

Major depressive disorder (MDD) is a common and debilitating psychiatric illness that affects millions of people worldwide. Despite advancements in the understanding its underlying mechanisms, diagnosis treatment MDD remain significant challenge. In this paper, we present an approach for classification patients with based on their functional network measures. Our results demonstrate simple Linear Discriminant Analysis achieves high accuracy (83 %) two cases: when use all network's couplings or only strongest ones.

Язык: Английский

Процитировано

0