Flavor engineering: A comprehensive review of biological foundations, AI integration, industrial development, and socio-cultural dynamics DOI Creative Commons
Luciano Paganucci de Queiroz, Idelfonso B. R. Nogueira, Ana M. Ribeiro

и другие.

Food Research International, Год журнала: 2024, Номер 196, С. 115100 - 115100

Опубликована: Сен. 17, 2024

This state-of-the-art review comprehensively explores flavor development, spanning biological foundations, analytical methodologies, and the socio-cultural impact. It incorporates an industrial perspective examines role of artificial intelligence (AI) in science. Initiating with intricacies flavor, delves into interplay taste, aroma, texture rooted sensory experiences. Advances mathematical modeling techniques open avenues for interdisciplinary collaboration technological innovation, addressing variations perception. The impact extends beyond gustatory experiences, influencing economics, society, nutrition, health, innovation. collective understanding deepens insight dynamic between olfactory elements within cultural landscapes, emphasizing how experiences are woven human culture heritage. evolution food analysis, encompassing instrumental a combination both, integration techniques, signifies progression and, promising advancements precision, efficiency, innovation industry. comprehensive involved analyzing key aspects engineering related sectors. Articles book chapters on these topics were collected using metadata analysis. data this analysis was extracted from major online databases, including Scopus, Web Science, ScienceDirect.

Язык: Английский

Metabolomics-centered mining of plant metabolic diversity and function: Past decade and future perspectives DOI Creative Commons
Shuangqian Shen, Chuansong Zhan, Chenkun Yang

и другие.

Molecular Plant, Год журнала: 2022, Номер 16(1), С. 43 - 63

Опубликована: Сен. 16, 2022

Язык: Английский

Процитировано

151

Recent advances and application of machine learning in food flavor prediction and regulation DOI
Huizhuo Ji, Dandan Pu, Wenjing Yan

и другие.

Trends in Food Science & Technology, Год журнала: 2023, Номер 138, С. 738 - 751

Опубликована: Июль 22, 2023

Язык: Английский

Процитировано

87

The emerging role of nanotechnology in plant genetic engineering DOI
Henry Squire,

Sophia Tomatz,

Elizabeth Voke

и другие.

Nature Reviews Bioengineering, Год журнала: 2023, Номер 1(5), С. 314 - 328

Опубликована: Фев. 22, 2023

Язык: Английский

Процитировано

57

Predicting and improving complex beer flavor through machine learning DOI Creative Commons
Michiel Schreurs,

Supinya Piampongsant,

Miguel Roncoroni

и другие.

Nature Communications, Год журнала: 2024, Номер 15(1)

Опубликована: Март 26, 2024

Abstract The perception and appreciation of food flavor depends on many interacting chemical compounds external factors, therefore proves challenging to understand predict. Here, we combine extensive sensory analyses 250 different beers train machine learning models that allow predicting consumer appreciation. For each beer, measure over 200 properties, perform quantitative descriptive analysis with a trained tasting panel map data from 180,000 reviews 10 models. best-performing algorithm, Gradient Boosting, yields significantly outperform predictions based conventional statistics accurately predict complex features profiles. Model dissection allows identifying specific unexpected as drivers beer Adding these results in variants commercial alcoholic non-alcoholic improved Together, our study reveals how big uncover links between chemistry, perception, lays the foundation develop novel, tailored foods superior flavors.

Язык: Английский

Процитировано

43

Metabolomics and chemometrics: The next-generation analytical toolkit for the evaluation of food quality and authenticity DOI Creative Commons
Pascual García-Pérez, Pier Paolo Becchi, Leilei Zhang

и другие.

Trends in Food Science & Technology, Год журнала: 2024, Номер 147, С. 104481 - 104481

Опубликована: Апрель 7, 2024

The advances in NMR and mass spectrometry metabolomics allows a comprehensive profiling of foods, potentially covering geographical origin, authenticity, quality integrity issues. However, mining specific effects within the corresponding datasets is challenging due to presence set interacting factors that finally determine signatures. This review provides an overview different approaches used food then focusing on chemometric for data interpretation. In particular, interpretation hierarchically presented, starting from unsupervised (PCA, hierarchical clusters) supervised multivariate statistics like OPLS AMOPLS multiblock ANOVA discriminant approaches. Finally, machine learning Artificial Neural Networks are discussed as novel emerging tool support Tailored advisable, rather than unique solutions, with naively provide qualitative recognition patterns, modelling markers identification. Nonetheless, approach able interpretate complex

Язык: Английский

Процитировано

26

Machine learning driven benchtop Vis/NIR spectroscopy for online detection of hybrid citrus quality DOI
Tao Jiang, Wei Zuo, Jianjun Ding

и другие.

Food Research International, Год журнала: 2025, Номер 201, С. 115617 - 115617

Опубликована: Янв. 2, 2025

Язык: Английский

Процитировано

2

Dissecting postharvest chilling injury through biotechnology DOI Creative Commons
Karin Albornoz, Jiaqi Zhou, Jingwei Yu

и другие.

Current Opinion in Biotechnology, Год журнала: 2022, Номер 78, С. 102790 - 102790

Опубликована: Сен. 15, 2022

Язык: Английский

Процитировано

45

Terpene volatiles mediates the chemical basis of blueberry aroma and consumer acceptability DOI
Luís Felipe V. Ferrão, Haley Sater,

P. M. Lyrene

и другие.

Food Research International, Год журнала: 2022, Номер 158, С. 111468 - 111468

Опубликована: Июнь 11, 2022

Язык: Английский

Процитировано

41

Molecular bases of strawberry fruit quality traits: Advances, challenges, and opportunities DOI Open Access
Zhongchi Liu,

T. Jake Liang,

Chunying Kang

и другие.

PLANT PHYSIOLOGY, Год журнала: 2023, Номер 193(2), С. 900 - 914

Опубликована: Июль 3, 2023

Abstract The strawberry is one of the world's most popular fruits, providing humans with vitamins, fibers, and antioxidants. Cultivated (Fragaria × ananassa) an allo-octoploid highly heterozygous, making it a challenge for breeding, quantitative trait locus (QTL) mapping, gene discovery. Some wild relatives, such as Fragaria vesca, have diploid genomes are becoming laboratory models cultivated strawberry. Recent advances in genome sequencing CRISPR-mediated editing greatly improved understanding various aspects growth development both strawberries. This review focuses on fruit quality traits that relevant to consumers, including aroma, sweetness, color, firmness, shape. Recently available phased-haplotype genomes, single nucleotide polymorphism (SNP) arrays, extensive transcriptomes, other big data made possible locate key genomic regions or pinpoint specific genes underlie volatile synthesis, anthocyanin accumulation sweetness intensity perception. These new will facilitate marker-assisted introgression missing into modern varieties, precise selected pathways. Strawberries poised benefit from these recent advances, consumers tastier, longer-lasting, healthier, more beautiful.

Язык: Английский

Процитировано

36

A metabolic perspective of selection for fruit quality related to apple domestication and improvement DOI Creative Commons
Qiong Lin, Jing Chen, Xuan Liu

и другие.

Genome biology, Год журнала: 2023, Номер 24(1)

Опубликована: Апрель 26, 2023

Apple is an economically important fruit crop. Changes in metabolism accompanying human-guided evolution can be revealed using a multiomics approach. We perform genome-wide metabolic analysis of apple fruits collected from 292 wild and cultivated accessions representing various consumption types.We find decreased amounts certain metabolites, including tannins, organic acids, phenolic flavonoids as the transition to apples, while lysolipids increase "Golden Delicious" "Ralls Janet" pedigree, suggesting better storage. identify total 222,877 significant single-nucleotide polymorphisms that are associated with 2205 metabolites. Investigation region 2.84 5.01 Mb on chromosome 16 containing co-mapping regions for indicates importance these metabolites quality nutrition during breeding. The tannin acidity-related genes Myb9-like PH4 mapped closely weight locus fw1 3.41 3.76 15, under selection domestication. Lysophosphatidylethanolamine (LPE) 18:1, which suppressed by fatty acid desaturase-2 (FAD2), positively correlated firmness. negatively salicylic abscisic levels. Further functional assays demonstrate regulation hormone levels NAC-like activated Apetala3/Pistillata (NAP) ATP binding cassette G25 (ABCG25), respectively.This study provides perspective domestication improvement, valuable resource investigating mechanisms controlling metabolite content quality.

Язык: Английский

Процитировано

32