Deep learning sharpens vistas on biodiversity mapping DOI Creative Commons
Thomas J. Givnish

Proceedings of the National Academy of Sciences, Год журнала: 2024, Номер 121(41)

Опубликована: Сен. 30, 2024

Язык: Английский

Deep learning models map rapid plant species changes from citizen science and remote sensing data DOI Creative Commons
Lauren Gillespie, Megan Ruffley, Moisés Expósito‐Alonso

и другие.

Proceedings of the National Academy of Sciences, Год журнала: 2024, Номер 121(37)

Опубликована: Сен. 5, 2024

Anthropogenic habitat destruction and climate change are reshaping the geographic distribution of plants worldwide. However, we still unable to map species shifts at high spatial, temporal, taxonomic resolution. Here, develop a deep learning model trained using remote sensing images from California paired with half million citizen science observations that can over 2,000 plant species. Our model-

Язык: Английский

Процитировано

5

Multimodal Spatio-Temporal Data Visualization Technologies for Contemporary Urban Landscape Architecture: A Review and Prospect in the Context of Smart Cities DOI Creative Commons

Xiao Han,

Zhe Li, Hao Cao

и другие.

Land, Год журнала: 2025, Номер 14(5), С. 1069 - 1069

Опубликована: Май 15, 2025

The development of smart cities provides a vital foundation for the intelligent advancement landscape architecture and engineering technologies, where multimodal spatio-temporal data visualization plays key role. This study conducts scoping review to explore advancements in within assess their potential drive urban intelligence sustainable development. analyzes publication trends, types, application scenarios, identifies research challenges future directions. results indicate that complementary integration basic sensing has established relatively mature technical pathways clustering, correlation analysis, process simulation, trend forecasting. Future should prioritize real-time presentation, efficient platform integration, processing scientific mapping massive information, interdisciplinary practical applications. lays architecture, highlighting promising prospects technological advancement.

Язык: Английский

Процитировано

0

Forest maturation and its drivers on the Qinghai-Xizang Plateau DOI
Yuxi Wang, Lin Zhang, Francisco I. Pugnaire

и другие.

Agricultural and Forest Meteorology, Год журнала: 2025, Номер 371, С. 110642 - 110642

Опубликована: Май 23, 2025

Язык: Английский

Процитировано

0

Contrastive Ground-Level Image and Remote Sensing Pre-training Improves Representation Learning for Natural World Imagery DOI

Anthony Huynh,

Lauren Gillespie,

Jael Lopez-Saucedo

и другие.

Lecture notes in computer science, Год журнала: 2024, Номер unknown, С. 173 - 190

Опубликована: Окт. 25, 2024

Язык: Английский

Процитировано

0

Deep learning sharpens vistas on biodiversity mapping DOI Creative Commons
Thomas J. Givnish

Proceedings of the National Academy of Sciences, Год журнала: 2024, Номер 121(41)

Опубликована: Сен. 30, 2024

Язык: Английский

Процитировано

0