Neurocomputing, Год журнала: 2025, Номер unknown, С. 130603 - 130603
Опубликована: Май 1, 2025
Язык: Английский
Neurocomputing, Год журнала: 2025, Номер unknown, С. 130603 - 130603
Опубликована: Май 1, 2025
Язык: Английский
Mathematics, Год журнала: 2025, Номер 13(4), С. 675 - 675
Опубликована: Фев. 18, 2025
With the rapid advancement of artificial intelligence (AI) technology, demand for vast amounts data training AI algorithms to attain has become indispensable. However, in realm big high feature dimensions frequently give rise overfitting issues during training, thereby diminishing model accuracy. To enhance prediction accuracy, selection (FS) methods have arisen with goal eliminating redundant features within datasets. In this paper, a highly efficient FS method advanced performance, called EMEPO, is proposed. It combines three learning strategies on basis Parrot Optimizer (PO) better ensure performance. Firstly, novel exploitation strategy introduced, which integrates randomness, optimality, and Levy flight algorithm’s local capabilities, reduce execution time solving problems, classification Secondly, multi-population evolutionary takes into account diversity individuals based fitness values optimize balance between exploration stages algorithm, ultimately improving capability explore solution space globally. Finally, unique focusing individual boost population problems. This approach improves capacity avoid suboptimal subsets. The EMEPO-based tested 23 datasets spanning low-, medium-, high-dimensional data. results show exceptional performance reduction, efficiency, convergence speed, stability. indicates promise as an effective selection.
Язык: Английский
Процитировано
0Chaos Solitons & Fractals, Год журнала: 2025, Номер 194, С. 116219 - 116219
Опубликована: Фев. 28, 2025
Язык: Английский
Процитировано
0Biomimetics, Год журнала: 2025, Номер 10(3), С. 176 - 176
Опубликована: Март 12, 2025
The Educational Competition Optimizer (ECO) is a newly proposed human-based metaheuristic algorithm. It derives from the phenomenon of educational competition in society with good performance. However, basic ECO constrained by its limited exploitation and exploration abilities when tackling complex optimization problems exhibits drawbacks premature convergence diminished population diversity. To this end, paper proposes an enhanced optimizer, named EDECO, incorporating estimation distribution algorithm replacing some best individual(s) using dynamic fitness distance balancing strategy. On one hand, enhances global ability improves quality establishing probabilistic model based on dominant individuals provided which solves problem that unable to search neighborhood optimal solution. other strategy increases speed balances through adaptive mechanism. Finally, conducts experiments EDECO 29 CEC 2017 benchmark functions compares four algorithms as well advanced improved algorithms. results show indeed achieves significant improvements compared algorithms, performs noticeably better than competitors. Next, study applies 10 engineering problems, experimental superiority solving real problems. These findings further support effectiveness usefulness our challenges.
Язык: Английский
Процитировано
0Journal Of Big Data, Год журнала: 2025, Номер 12(1)
Опубликована: Март 21, 2025
Язык: Английский
Процитировано
0Knowledge-Based Systems, Год журнала: 2025, Номер unknown, С. 113414 - 113414
Опубликована: Март 1, 2025
Язык: Английский
Процитировано
0Results in Engineering, Год журнала: 2025, Номер unknown, С. 104748 - 104748
Опубликована: Март 1, 2025
Язык: Английский
Процитировано
0Journal of Energy Storage, Год журнала: 2025, Номер 120, С. 116381 - 116381
Опубликована: Апрель 9, 2025
Язык: Английский
Процитировано
0Water, Год журнала: 2025, Номер 17(8), С. 1221 - 1221
Опубликована: Апрель 19, 2025
This paper explores the intersection of water quality management and advanced metaheuristic algorithms (MAs) by optimizing location sensors in urban networks. A comparative analysis ten cutting-edge MAs, Harris Hawk Optimization (HHO), Artemisinin (AO), Educational Competition Optimizer (ECO), Fata Morgana Algorithm (FATA), Moss Growth (MGO), Parrot (PO), Polar Lights (PLO), Rime (RIME), Runge Kutta (RUN), Weighted Mean Vectors (INFO), was conducted to determine their effectiveness minimizing risk contaminated consumption. Both benchmark real-world network serve as case studies assess algorithmic performance. The optimization process focuses on reducing volume treating sensor placement a critical design variable. EPANET 2.2 software integrated with simulate hydraulic behavior within obtained results from two networks revealed that newer algorithms, such RIME FATA, exhibit superior convergence rates stability compared traditional methods. While all tested demonstrated satisfactory performance, this study provides foundational insights for future research, paving way more effective solutions management.
Язык: Английский
Процитировано
0Results in Engineering, Год журнала: 2025, Номер unknown, С. 105130 - 105130
Опубликована: Апрель 1, 2025
Язык: Английский
Процитировано
0Journal of Bionic Engineering, Год журнала: 2025, Номер unknown
Опубликована: Апрель 28, 2025
Язык: Английский
Процитировано
0