Artificial intelligence as a challenge for media education DOI Creative Commons
Ewa Nowicka

Family Upbringing, Год журнала: 2024, Номер 31(2), С. 205 - 217

Опубликована: Окт. 16, 2024

<b>Cel</b>. Pojawienie się sztucznej inteligencji budzi z jednej strony duże zainteresowanie, ale drugiej jednak rodzi wiele obaw i wątpliwości. Niewątpliwie elementy będą miały swój istotny udział w procesie kształcenia, uczenia się, zabawie rozrywce dzieci młodzieży. W obliczu tych zmian niezwykle ważne staje budowanie odpowiedzialnej postawy wobec inteligencji, jej twórczego właściwego wykorzystania przez nauczycieli szkole, także samych uczniów rodziców. Opracowany artykuł ma na celu przedstawić znaczenie rolę edukacji medialnej praktykowanej rozwoju która coraz częściej znajduje swoje zastosowanie szeroko pojętej edukacji. <b>Metody materiały</b>. artykule zastosowano przegląd poglądów założeń wyjaśniających Podkreślono przekonania akcentujące potrzebę praktykowania wśród młodzieży, będzie pomocą prawidłowym zastosowaniu <b>Wyniki wnioski</b>. Każdego dnia pojawiają nowe możliwości, zadania rozwiązania zakładające wykorzystanie AI, które powodzeniem można kreatywnie wykorzystać Jednak też wątpliwości, ograniczenia zagrożenia wynikające nieumiejętnego korzystania ze działaniach edukacyjnych. tym miejscu ważną nową do spełnienia edukacja medialna praktykowana nauczycieli, którzy mogą wyjaśniać prezentować, jaki sposób należy wykorzystywać narzędzia aplikacje oparte inteligencji.

The Staging of AI: Exploring Perspectives about Generative AI, Creativity and Education DOI
Edwin Creely, Danah Henriksen, Michael Henderson

и другие.

Опубликована: Янв. 1, 2025

In this article we investigate the role of generative AI in education with a focus on creativity, utilising relevant features from Augusto Boal's forum theatre as part participatory qualitative inquiry. Presenting three perspectives-Circumspect, Daring, and Cautiously Optimistic-our explores emotional intellectual responses to presents these form monologues, revealing personal insights intricate balance between AI's benefits risks. Adopting creative post-qualitative approach, avoid forced consensus, instead weaving individual viewpoints reflective commentary that seeks unify elucidate. The adoption vehicle for our inquiry serves deepen understanding transformative potential educational settings highlights need collaborative critical approach education, one honours diversity opinions evolving domain.

Язык: Английский

Процитировано

0

Advancing SDG 4: Harnessing Generative AI to Transform Learning, Teaching, and Educational Equity in Higher Education DOI
Vengalarao Pachava, Olusiji Adebola Lasekan,

Claudia Myrna Méndez-Alarcón

и другие.

Journal of Lifestyle and SDGs Review, Год журнала: 2025, Номер 5(2), С. e03774 - e03774

Опубликована: Янв. 7, 2025

Objective: The objective of this study is to investigate the transformative potential generative AI in advancing Sustainable Development Goal 4 (SDG 4), with aim enhancing equity, accessibility, and quality higher education through integration AI-driven systems practices. Theoretical Framework: This research underpinned by Academic Convergence (AIAC) Framework, which aligns theories such as constructivism, Vygotsky’s cultural-historical theory, Bloom’s Taxonomy. These frameworks provide a solid basis for understanding interplay between personalized learning, cognitive engagement, stakeholder collaboration, ethical governance educational ecosystems. Method: methodology adopted comprises Literature-Driven Conceptual Framework approach, synthesizing peer-reviewed studies across key themes: operational efficiency, collaborative governance. Data collection involved systematic literature reviews scholarly articles, books, conference proceedings within past decade. Results Discussion: results reveal that AIAC promotes tailored, adaptive learning pathways, enhances faculty roles AI-enabled mentors, optimizes administrative workflows predictive analytics. discussion contextualizes these findings existing theories, emphasizing framework's ability mitigate challenges algorithmic bias, equity gaps, data privacy concerns. Limitations include need empirical validation addressing resource disparities underprivileged contexts. Research Implications: practical theoretical implications are significant institutions, policymakers, practitioners. fostering innovative teaching practices, equitable access AI-enhanced tools, aligning strategies labor market demands analytics Originality/Value: contributes introducing an scalable model integrating into education. Its value lies bridging digital divide, lifelong positioning institutions leaders sustainable integration, ultimately mission SDG 4.

Язык: Английский

Процитировано

0

Generative AI Implementation and Assessment in Arabic Language Teaching DOI Creative Commons
Mozah H. Alkaabi, Asma Saeed Almaamari

International Journal of Online Pedagogy and Course Design, Год журнала: 2025, Номер 15(1), С. 1 - 18

Опубликована: Янв. 23, 2025

Artificial intelligence (AI) models struggle to reach performance levels due the complex nature of Arabic grammar and diverse regional dialects. This study investigated how generative AI (GenAI) functions as a teaching assistant in language classrooms. Using qualitative methods, semi-structured interviews were conducted with 15 instructors; data was then analyzed using thematic analysis. Results revealed that instructors used GenAI create material, assess students' work, personalized learning plans. Instructors struggled, however, accuracy dialect processing, cultural authenticity, ensuring accurate assessment methods. The analysis raised significant gaps teacher training, strategies, institutional guidelines. found it challenging evaluate AI-generated content across different dialects maintain academic integrity student assignments. recommends developing instructor specifically on tools for variations creating culturally appropriate materials.

Язык: Английский

Процитировано

0

What drives Chinese university students’ long-term use of GenAI? Evidence from the heuristic-systematic model DOI
Yin Liu, Z H Zhang, Yingkai Wu

и другие.

Education and Information Technologies, Год журнала: 2025, Номер unknown

Опубликована: Фев. 4, 2025

Язык: Английский

Процитировано

0

Application of AI in engineering education: A bibliometric study DOI Open Access
Y.W. Liu, Yuhui Jing, Jing Li

и другие.

Review of Education, Год журнала: 2025, Номер 13(1)

Опубликована: Фев. 18, 2025

Abstract The integration of artificial intelligence (AI) into engineering education is essential for fostering innovation, strategic thinking and interdisciplinary skills in the intelligent era. On this basis, study aims to track visually represent research outputs associated with AI applications education, providing insights current landscape identifying areas further investigation. analysis offers theoretical methodological direction leveraging education. Utilising bibliometric methods, we conducted a comprehensive visualisation 378 core publications from Web Science (WoS) database, spanning beginning twenty‐first century present. Our findings show consistent rise publication volume 2000 2017, significant surge 2018 2023. identifies International Journal Engineering Education Computer Applications as pivotal journals field. clusters around two central themes: supportive technologies specific educational applications. Within expert systems, data mining, prediction machine learning are highlighted key areas. field has evolved through distinct phases, starting an early focus on technology support moving emphasis pedagogical applications, currently striving balance between diverse practical Context implications Rationale Research AI‐enabled necessary because it vital measure cultivating innovative, talents era intelligence. article applies techniques visualise developmental pulse use Why new matter firstly help researchers grasp development priorities fill gaps, secondly provide guidance application visualisation. Implications practitioners summarises situation breaks down knowledge map field, provides practitioners, especially researchers, important references understand triggers continuous attention all sectors society In addition, school administrators will be able guide practice teaching based study, frontline teachers practise which effectively improve efficiency

Язык: Английский

Процитировано

0

A Novel Approach to Scalable and Automatic Topic-Controlled Question Generation in Education DOI

Zhuhang Li,

Mutlu Cukurova, Sahan Bulathwela

и другие.

Опубликована: Фев. 21, 2025

Язык: Английский

Процитировано

0

Learning, design and technology in the age of AI DOI Creative Commons
Michail N. Giannakos, Michael Horn, Mutlu Cukurova

и другие.

Behaviour and Information Technology, Год журнала: 2025, Номер unknown, С. 1 - 5

Опубликована: Фев. 26, 2025

Язык: Английский

Процитировано

0

Exploring the impact of generative artificial intelligence on students’ learning outcomes: a meta-analysis DOI
Yinkun Zhu, Qiwen Liu, Li Zhao

и другие.

Education and Information Technologies, Год журнала: 2025, Номер unknown

Опубликована: Фев. 26, 2025

Язык: Английский

Процитировано

0

Towards Blended Learning in Primary STEM in Latvia: Four Teaching Profiles DOI Creative Commons
Ildze Čakāne, Kārlis Greitāns, Ģirts Burgmanis

и другие.

Education Sciences, Год журнала: 2025, Номер 15(3), С. 295 - 295

Опубликована: Фев. 27, 2025

In the present research, authors assessed teaching quality in context of blended learning primary STEM; educational reforms authors’ country require a digital transformation education and gradual shift to learning; therefore, appropriate should follow STEM classrooms. This research investigates following questions: how can we conceptualize order determine quality? What profiles are characteristic analyzed lessons what do indicate about student opportunities for learning? Through analysis existing reports STEM, set three categories as important happen, namely (1) with information communication technologies (ICTs); (2) self-regulated (3) deep learning. To answer questions, used quantitative rubric-based evaluation approach. The selected criteria tandem level descriptors (from previously developed validated framework) were analyze lesson transcripts performance across eight criteria. Furthermore, profiling approach was uncover patterns data describing quality; revealed four different profiles. use ICT majority 187 remains at surface or is non-existent. Teaching observed, which students had various observed 11% samples’ all those level. addition analyzing through framework, this study contributes novel that systematically uncovers context. By integrating use, learning, provides an original lens on guide both educators policymakers implementing effective strategies.

Язык: Английский

Процитировано

0

AI for data generation in education: Towards learning and teaching support at scale DOI Open Access
Mohammad Khalil, Qinyi Liu, Jelena Jovanovic

и другие.

British Journal of Educational Technology, Год журнала: 2025, Номер unknown

Опубликована: Март 7, 2025

Abstract Supporting learning and teaching at scale requires access to large high‐quality content datasets for analysis innovation. With rapid advances in artificial intelligence (AI) the growing demand data, synthetic data has emerged as a potential solution addressing these challenges. This editorial introduces contributions of five accepted articles special section AI Synthetic Data Generation Education: Scaling Teaching Learning. These explore key themes leveraging AI‐generated support well enhance educational practices scale. The emphasizes that hybrid strategies leverage alongside human judgment are essential scaling through generation.

Язык: Английский

Процитировано

0