Journal of Spatial Science, Год журнала: 2024, Номер unknown, С. 1 - 26
Опубликована: Окт. 1, 2024
Язык: Английский
Journal of Spatial Science, Год журнала: 2024, Номер unknown, С. 1 - 26
Опубликована: Окт. 1, 2024
Язык: Английский
Advances in Space Research, Год журнала: 2024, Номер 74(3), С. 1197 - 1224
Опубликована: Май 10, 2024
Язык: Английский
Процитировано
12Results in Engineering, Год журнала: 2024, Номер unknown, С. 103205 - 103205
Опубликована: Окт. 1, 2024
Язык: Английский
Процитировано
5Geological Journal, Год журнала: 2025, Номер unknown
Опубликована: Фев. 19, 2025
ABSTRACT Creating accurate and effective Landslide Susceptibility (LS) maps can aid disaster prevention mitigation efforts provide sufficient public safety. The primary aim of this study is to develop an LS map for the Garo Hills region in Meghalaya, India, using weight evidence (WoE), frequency ratio (FR), Shannon entropy (SE) methods. A comprehensive landslide inventory catalogued 98 events from 2000 2023 analysis, nine key geographical environmental parameters were prepared. Conducted multicollinearity correlation analysis identify mitigate collinearity issues between factors. model's performance was analysed through area under curve (AUC) value receiver operating characteristic (ROC) curves three recent landslides. results showed that FR method achieved highest accuracy, with successive rate (SRC) AUC predictive (PRC) values 0.860 0.940, respectively, classified susceptibility at sites as high, moderate, low. WoE effectively identified landslides site high very zones, achieving SRC PRC 0.844 0.915, respectively. SE robust predicting landslide‐prone areas, comparable other methods (0.913), though its (0.771) lower. Developed revealed zones account approximately 10% 3% area, predominantly near roads, steep slopes, higher elevations. information valuable civilians government authorities involved hazard monitoring management.
Язык: Английский
Процитировано
0Scientific Reports, Год журнала: 2025, Номер 15(1)
Опубликована: Апрель 10, 2025
The study of susceptibility to geological hazards is crucial not only for local risk assessment but also understanding global patterns in disaster-prone regions. Geological such as landslides and subsidence are a common threat worldwide, affecting millions people causing significant economic losses annually. Landslides major hazard the Tongling City, Tongguan District, Anhui, China, posing risks infrastructure human activity. This assesses using seven influencing factors, including elevation, slope, aspect, distance faults. Both information value certainty factor (CF) models were applied evaluate region's landslide susceptibility, resulting classification area into five levels. While primary focus, ground collapses observed, though much lesser extent. focuses on interest District. found that: (1) predominantly concentrated within 300 m faults along cut slopes adjacent mountain roads buildings. distribution indicates that both construction activities factors contributing frequent occurrence region; (2) proportion classified high-prone City significant, indicating need focused mitigation efforts. (3) CF can effectively region. under curve (AUC) receiver operating characteristic (ROC) curves used models' performance, with model demonstrating superior evaluation accuracy. emphasizes areas District susceptible landslides, offering critical insights strategies decision-making prevention, treatment, emergency response regions similar conditions.
Язык: Английский
Процитировано
0Environmental Sciences Europe, Год журнала: 2025, Номер 37(1)
Опубликована: Апрель 22, 2025
Язык: Английский
Процитировано
0Geocarto International, Год журнала: 2025, Номер 40(1)
Опубликована: Апрель 25, 2025
Язык: Английский
Процитировано
0MethodsX, Год журнала: 2024, Номер 13, С. 103005 - 103005
Опубликована: Окт. 17, 2024
Язык: Английский
Процитировано
2Journal of Spatial Science, Год журнала: 2024, Номер unknown, С. 1 - 26
Опубликована: Окт. 1, 2024
Язык: Английский
Процитировано
1