Optimal parameter identification of adaptive fuzzy logic MPPT based-bald eagle search optimization algorithm to boost the performance of PEM fuel cell DOI Creative Commons
Motab Turki Almousa, Hegazy Rezk

Energy Reports, Год журнала: 2024, Номер 12, С. 5899 - 5908

Опубликована: Ноя. 28, 2024

Язык: Английский

Recent applications and advances of African Vultures Optimization Algorithm DOI Creative Commons
Abdelazim G. Hussien, Farhad Soleimanian Gharehchopogh, Anas Bouaouda

и другие.

Artificial Intelligence Review, Год журнала: 2024, Номер 57(12)

Опубликована: Окт. 17, 2024

Язык: Английский

Процитировано

9

Causality-driven sequence segmentation assisted soft sensing for multiphase industrial processes DOI

Yimeng He,

Xinmin Zhang, Xiangyin Kong

и другие.

Neurocomputing, Год журнала: 2025, Номер unknown, С. 129612 - 129612

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

0

A new metaheuristic algorithm for solving multi-objective single-machine scheduling problems DOI Creative Commons

Tahani Jabbar Khraibet,

Bayda Atiya Kalaf,

Wafaa Mansoor

и другие.

Journal of Intelligent Systems, Год журнала: 2025, Номер 34(1)

Опубликована: Янв. 1, 2025

Abstract Multi-objective scheduling problems are inherently complex due to the need balance competing objectives, such as minimizing total weighted completion time, reducing number of delayed jobs, and maximum delay. To address these challenges, this article introduces meerkat clan algorithm (MCA), inspired by dynamic, cooperative, adaptive behaviors meerkats, which enhances exploration exploitation solution spaces. The MCA is further integrated with traditional branch-and-bound (BAB) method, utilizing it an upper bound significantly improve accuracy efficiency solutions. Comprehensive computational experiments were conducted evaluate MCA’s performance against state-of-the-art algorithms, including bald eagle search optimization (BESOA) standalone BAB method. demonstrated superior scalability efficiency, effectively solving involving up n = 30,000 whereas BESOA was limited handling instances 1,000 jobs. Additionally, integration method achieved exceptional precision for smaller problem instances, 13 jobs effectively. results underscore algorithm’s potential a robust multi-objective problems, combining speed outperform methods. Moreover, hybrid approach integrating provides flexible versatile framework capable addressing wide range scenarios, from small-scale large-scale applications. These findings position transformative tool in both theoretical practical domains.

Язык: Английский

Процитировано

0

Atom Search Optimization: a comprehensive review of its variants, applications, and future directions DOI Creative Commons
M.A. El‐Shorbagy, Anas Bouaouda, Laith Abualigah

и другие.

PeerJ Computer Science, Год журнала: 2025, Номер 11, С. e2722 - e2722

Опубликована: Фев. 28, 2025

The Atom Search Optimization (ASO) algorithm is a recent advancement in metaheuristic optimization inspired by principles of molecular dynamics. It mathematically models and simulates the natural behavior atoms, with interactions governed forces derived from Lennard-Jones potential constraint based on bond-length potentials. Since its inception 2019, it has been successfully applied to various challenges across diverse fields technology science. Despite notable achievements rapidly growing body literature ASO domain, comprehensive study evaluating success implementations still lacking. To address this gap, article provides thorough review half decade advancements research, synthesizing wide range studies highlight key variants, their foundational principles, significant achievements. examines applications, including single- multi-objective problems, introduces well-structured taxonomy guide future exploration ASO-related research. reviewed reveals that several variants algorithm, modifications, hybridizations, implementations, have developed tackle complex problems. Moreover, effectively domains, such as engineering, healthcare medical Internet Things communication, clustering data mining, environmental modeling, security, engineering emerging most prevalent application area. By addressing common researchers face selecting appropriate algorithms for real-world valuable insights into practical applications offers guidance designing tailored specific

Язык: Английский

Процитировано

0

A survey of Beluga whale optimization and its variants: Statistical analysis, advances, and structural reviewing DOI
Sang-Woong Lee, Amir Haider, Amir Masoud Rahmani

и другие.

Computer Science Review, Год журнала: 2025, Номер 57, С. 100740 - 100740

Опубликована: Март 3, 2025

Язык: Английский

Процитировано

0

Nonlinear Marine Predator Algorithm for Robust Identification of Fractional Hammerstein Nonlinear Model under Impulsive Noise with Application to Heat Exchanger System DOI
Zeshan Aslam Khan, Taimoor Ali Khan,

Muhammad Waqar

и другие.

Communications in Nonlinear Science and Numerical Simulation, Год журнала: 2025, Номер unknown, С. 108809 - 108809

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

0

Breast cancer prediction with feature-selected XGB classifier, optimized by metaheuristic algorithms DOI Creative Commons
Palash Sarker, Amel Ksibi, Mona Jamjoom

и другие.

Journal Of Big Data, Год журнала: 2025, Номер 12(1)

Опубликована: Апрель 1, 2025

Язык: Английский

Процитировано

0

2D-Variation convolution-based generative adversarial network for unsupervised time series anomaly detection: a MSTL enhanced data preprocessing approach DOI

Qingdong Wang,

Lei Zou, Weibo Liu

и другие.

Applied Intelligence, Год журнала: 2025, Номер 55(7)

Опубликована: Апрель 9, 2025

Язык: Английский

Процитировано

0

Deep Recurrent Neural Network with Fractional Addax Optimization Algorithm for Influenza Virus Host Prediction DOI Creative Commons
Shweta Ashish Koparde, Sonali Kothari,

Sharad Adsure

и другие.

MethodsX, Год журнала: 2025, Номер unknown, С. 103319 - 103319

Опубликована: Апрель 1, 2025

Язык: Английский

Процитировано

0

Transformer fault diagnosis using machine learning: a method combining SHAP feature selection and intelligent optimization of LGBM DOI Creative Commons
Cheng Liu, Weiming Yang

Energy Informatics, Год журнала: 2025, Номер 8(1)

Опубликована: Апрель 22, 2025

Язык: Английский

Процитировано

0