
IEEE Access, Год журнала: 2024, Номер 12, С. 181217 - 181231
Опубликована: Янв. 1, 2024
Язык: Английский
IEEE Access, Год журнала: 2024, Номер 12, С. 181217 - 181231
Опубликована: Янв. 1, 2024
Язык: Английский
Scientific Reports, Год журнала: 2025, Номер 15(1)
Опубликована: Март 2, 2025
Modelling the circuit model parameters of photovoltaic (PV) cells and modules is one significant encounters in field solar energy. Lately, with advance application optimization algorithms, approximating PV module can be changed into an problem. This research offers pipeline for optimal collection systems. The method founded on a novel combination metaheuristic algorithm, termed AHEO (Adapted Human Evolutionary Optimizer) current goal. key purpose employing paper to minimalize root mean square error (RMSE) between forecast measured I–V curves system. has been confirmed commercial results show its high accuracy RMSE decrease 34.6% related conventional methods.
Язык: Английский
Процитировано
0Journal of Cleaner Production, Год журнала: 2025, Номер unknown, С. 145199 - 145199
Опубликована: Март 1, 2025
Язык: Английский
Процитировано
0Mathematics, Год журнала: 2024, Номер 13(1), С. 19 - 19
Опубликована: Дек. 25, 2024
Accurately modeling photovoltaic (PV) cells is crucial for optimizing PV systems. Researchers have proposed numerous mathematical models of to facilitate the design and simulation Usually, a cell modeled by equivalent electrical circuit with specific parameters, which are often unknown; this leads formulating an optimization problem that addressed through metaheuristic algorithms identify cell/module parameters accurately. This paper introduces flood algorithm (FLA), novel efficient approach, extract various models, including single-diode, double-diode, three-diode module configurations. The FLA’s performance systematically evaluated against nine recently developed comprehensive comparative statistical analyses. results highlight superior convergence speed, global search capability, robustness. study explores two distinct objective functions enhance accuracy: one based on experimental current–voltage data another integrating Newton–Raphson method. Applying Newton–Raphson-based function reduced root-mean-square error (RMSE) more effectively than traditional methods. These findings establish FLA as computationally reliable approach parameter extraction, promising implications advancing system simulation.
Язык: Английский
Процитировано
1IEEE Access, Год журнала: 2024, Номер 12, С. 181217 - 181231
Опубликована: Янв. 1, 2024
Язык: Английский
Процитировано
0