Geocomplexity Statistical Indicator to Enhance Multiclass Semantic Segmentation of Remotely Sensed Data with Less Sampling Bias DOI Creative Commons
Wei He, Lianfa Li,

Xilin Gao

и другие.

Remote Sensing, Год журнала: 2024, Номер 16(11), С. 1987 - 1987

Опубликована: Май 31, 2024

Challenges in enhancing the multiclass segmentation of remotely sensed data include expensive and scarce labeled samples, complex geo-surface scenes, resulting biases. The intricate nature geographical surfaces, comprising varying elements features, introduces significant complexity to task segmentation. limited label used train models may exhibit biases due imbalances or inadequate representation certain surface types features. For applications like land use/cover monitoring, assumption evenly distributed simple random sampling be not satisfied spatial stratified heterogeneity, introducing that can adversely impact model’s ability generalize effectively across diverse areas. We introduced two statistical indicators encode geo-features under scenes designed a corresponding optimal scheme select representative samples reduce bias during machine learning model training, especially deep models. results scores showed entropy-based gray-based detected from scenes: indicator was sensitive boundaries different classes contours objects, while Moran’s I had better performance identifying structure information objects remote sensing images. According scores, methods appropriately adapted distribution training geo-context enhanced their representativeness relative population. single-score method achieved highest improvement DeepLab-V3 (increasing pixel accuracy by 0.3% MIoU 5.5%), multi-score SegFormer ACC 0.2% 2.4%). These findings carry implications for quantifying hence enhance semantic high-resolution images with less bias.

Язык: Английский

Ecological assessment and driver analysis of high vegetation cover areas based on new remote sensing index DOI Creative Commons
Xiaoyong Zhang, Weiwei Jia,

Shixin Lu

и другие.

Ecological Informatics, Год журнала: 2024, Номер 82, С. 102786 - 102786

Опубликована: Авг. 23, 2024

Язык: Английский

Процитировано

11

Research on the cool island effect of green spaces in megacity cores: A case study of the main urban area of Xi'an, China DOI
Kaili Zhang,

Qiqi Liu,

Bin Fang

и другие.

Sustainable Cities and Society, Год журнала: 2025, Номер unknown, С. 106255 - 106255

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

1

Built environments, communities, and housing price: A data-model integration approach DOI

Wei Hong,

Yimin Chen, Bin Chen

и другие.

Applied Geography, Год журнала: 2024, Номер 166, С. 103270 - 103270

Опубликована: Апрель 18, 2024

Язык: Английский

Процитировано

7

The dynamic patterns of critical ecological areas in the Yellow River Basin are driven primarily by climate factors but threatened by human activities DOI
Yunlong Zhang, Zhengyuan Zhao, Jie Zhu

и другие.

Journal of Environmental Management, Год журнала: 2024, Номер 371, С. 123282 - 123282

Опубликована: Ноя. 12, 2024

Язык: Английский

Процитировано

5

A Robust Geographically Optimal Zones-based heterogeneity model for analyzing the spatial determinants of national traffic accidents DOI Creative Commons
H. Luo,

Peng Luo,

Liqiu Meng

и другие.

GIScience & Remote Sensing, Год журнала: 2025, Номер 62(1)

Опубликована: Янв. 2, 2025

Revealing the factors associated with traffic accident risk across cities nationwide, including demographic and economic elements, is crucial for supporting safety policy, urban planning, insurance evaluation. Spatial stratified heterogeneity models, such as Geographically Optimized Zone-based Heterogeneity (GOZH) model, are widely used analyzing spatial association in large scale. However, their discretization process heavily depends on a manually set complexity parameter (cp), introducing significant uncertainty. To address this, we developed Robust GOZH (RGOZH), by inter-parameter relationships within Q function an optimization to achieve precise controlled geographic partitioning. By selecting optimal cp, RGOZH produces most reliable partitioning results. Testing Germany's dataset revealed strong patterns, achieving superior groupings while maintaining over 80% of explanatory power – stark contrast less interpretable results from GOZH. identified vehicle ownership, government employee proportion, income level primary shaping risk. This study highlights critical role large-scale pattern analysis management establishes robust framework future interdisciplinary geospatial research. Furthermore, provides replicable method that can adapt various regional datasets, enhancing its utility international studies. As methodological advancement, demonstrates value integrating optimized parameters into predictive models.

Язык: Английский

Процитировано

0

Evaluate Water Yield and Soil Conservation and Their Environmental Gradient Effects in Fujian Province in South China Based on InVEST and Geodetector Models DOI Open Access
Tianhang Li, Xiaojun Wang,

Hong Jia

и другие.

Water, Год журнала: 2025, Номер 17(2), С. 230 - 230

Опубликована: Янв. 16, 2025

Fujian Province is an important soil and water conservation region in hilly South China. However, there has been limited attention paid to the assessment of production at provincial level, distribution patterns ecosystem services under different environmental gradients regions have not revealed. This study evaluated spatiotemporal characteristics yield based on InVEST model 2000, 2010, 2020, explored their differences six gradients: elevation, slope, terrain position index, geomorphy, LULC, NDVI. The results statistics showed significant spatial differentiation temporal change yield; changes both exhibited obvious clustering cold hot spots (low high values); cities were higher than those conservation. index Geodetector that retention gradients; generally lower degree more sensitive response factors (slope, TPI, DEM). high-value 1000 2160 m for DEM, 25° 70.2° 0.81 1.42 medium mountain forest land 0.9 0.92 NDVI, which indicates mountainous with altitude, steep slopes, changes, vegetation coverage. exhibit distributions across gradients, should be adapting local conditions ecological environment development.

Язык: Английский

Процитировано

0

Landslide susceptibility assessment based on remote sensing interpretation and DBN-MLP model: a case study of Yiyuan County, China DOI Creative Commons
Shufeng Li, Chao Yin, Jiaxu Li

и другие.

Stochastic Environmental Research and Risk Assessment, Год журнала: 2025, Номер unknown

Опубликована: Янв. 19, 2025

Язык: Английский

Процитировано

0

Decoupling the effects of climate, topography, land use, revegetation, and dam construction on streamflow, sediment, total nitrogen and phosphorus in the Yangtze River Basin DOI Creative Commons

Yinan Ning,

João Pedro Nunes, Jichen Zhou

и другие.

The Science of The Total Environment, Год журнала: 2025, Номер 968, С. 178800 - 178800

Опубликована: Фев. 18, 2025

Язык: Английский

Процитировано

0

The Sensitivity of Rainfed Agricultural Crop Yields to CO2 Fertilization and Its Driving Mechanisms in East Africa DOI
Wanyi Zhu, Zhenke Zhang,

Enqi Zhang

и другие.

Environmental Research, Год журнала: 2025, Номер unknown, С. 121164 - 121164

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

0

The spatial reconstruction process and driving mechanism of China's grain production capacity since the 21st century DOI
Xiaodong Chang, Shijun Wang,

Zhipeng Yang

и другие.

自然资源学报, Год журнала: 2025, Номер 40(3), С. 728 - 728

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

0