
Journal of Pharmaceutical Analysis, Год журнала: 2024, Номер 14(11), С. 101160 - 101160
Опубликована: Ноя. 1, 2024
Язык: Английский
Journal of Pharmaceutical Analysis, Год журнала: 2024, Номер 14(11), С. 101160 - 101160
Опубликована: Ноя. 1, 2024
Язык: Английский
Nucleic Acids Research, Год журнала: 2024, Номер 53(D1), С. D595 - D603
Опубликована: Окт. 16, 2024
Abstract Synthetic binding proteins (SBPs) represent a pivotal class of artificially engineered proteins, meticulously crafted to exhibit targeted properties and specific functions. Here, the SYNBIP database, comprehensive resource for SBPs, has been significantly updated. These enhancements include (i) featuring 3D structures 899 SBP–target complexes illustrate epitopes (ii) using SBPs in monomer or complex forms with target their sequence space expanded five times 12 025 by integrating structure-based protein generation framework property prediction tool, (iii) offering detailed information on 78 473 newly identified SBP-like scaffolds from RCSB Protein Data Bank, an additional 16 401 555 ones AlphaFold Structure Database, (iv) database is regularly updated, incorporating 153 new SBPs. Furthermore, structural models all have enhanced through application AlphaFold2, clinical statuses concurrently refreshed. Additionally, design methods employed each SBP are now prominently featured database. In sum, 2.0 designed provide researchers essential data, facilitating innovation research, diagnosis therapy. freely accessible at https://idrblab.org/synbip/.
Язык: Английский
Процитировано
4Drug Discovery Today, Год журнала: 2025, Номер unknown, С. 104345 - 104345
Опубликована: Март 1, 2025
Язык: Английский
Процитировано
0Nucleic Acids Research, Год журнала: 2024, Номер 53(D1), С. D1 - D9
Опубликована: Дек. 10, 2024
The 2025 Nucleic Acids Research database issue contains 185 papers spanning biology and related areas. Seventy three new databases are covered, while resources previously described in the account for 101 update articles. Databases most recently published elsewhere a further 11 papers. acid include EXPRESSO multi-omics of 3D genome structure (this issue's chosen Breakthrough Resource Article) NAIRDB Fourier transform infrared data. New protein predictions human isoforms at ASpdb viral proteins BFVD. UniProt, Pfam InterPro have all provided updates: metabolism signalling covered by descriptions STRING, KEGG CAZy, updated microbe-oriented Enterobase, VFDB PHI-base. Biomedical research is supported, among others, ClinVar, PubChem DrugMAP. Genomics-related Ensembl, UCSC Genome Browser dbSNP. plant cover Solanaceae (SolR) Asteraceae (AMIR) families an from NCBI Taxonomy also features. Database Issue freely available on website (https://academic.oup.com/nar). At NAR online Molecular Biology Collection (http://www.oxfordjournals.org/nar/database/c/), 932 entries been reviewed last year, 74 added 226 discontinued URLs eliminated bringing current total to 2236 databases.
Язык: Английский
Процитировано
1Computers in Biology and Medicine, Год журнала: 2024, Номер 183, С. 109276 - 109276
Опубликована: Окт. 23, 2024
Язык: Английский
Процитировано
0Journal of Chemical Information and Modeling, Год журнала: 2024, Номер unknown
Опубликована: Дек. 3, 2024
Predicting drug-target interactions (DTIs) with precision is a crucial challenge in the quest for efficient and cost-effective drug discovery. Existing DTI prediction models often require significant computational resources because of intricate exceptionally lengthy protein target sequences. This study introduces MMF-DTI, lightweight model that uses multimodal fusion, to improve generalizability predictions without sacrificing efficiency. The MMF-DTI combines four distinct modalities: molecular sequence, properties, function description. approach noteworthy it first use natural language-based descriptions predicting DTIs. effectiveness has been confirmed through benchmark data sets, demonstrating its comparable performance terms generalizability, especially scenarios limited information about or target. Remarkably, accomplishes this using only half parameters 17% VRAM compared previous state-of-the-art models. allows even constrained environments. combination efficiency highlights potential fusion improving overall applicability models, providing promising opportunities future discovery endeavors.
Язык: Английский
Процитировано
0Journal of Pharmaceutical Analysis, Год журнала: 2024, Номер 14(11), С. 101160 - 101160
Опубликована: Ноя. 1, 2024
Язык: Английский
Процитировано
0